IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v117y2007i7p803-829.html
   My bibliography  Save this article

Error expansion for the discretization of backward stochastic differential equations

Author

Listed:
  • Gobet, Emmanuel
  • Labart, Céline

Abstract

We study the error induced by the time discretization of decoupled forward-backward stochastic differential equations (X,Y,Z). The forward component X is the solution of a Brownian stochastic differential equation and is approximated by a Euler scheme XN with N time steps. The backward component is approximated by a backward scheme. Firstly, we prove that the errors (YN-Y,ZN-Z) measured in the strong Lp-sense (p>=1) are of order N-1/2 (this generalizes the results by Zhang [J. Zhang, A numerical scheme for BSDEs, The Annals of Applied Probability 14 (1) (2004) 459-488]). Secondly, an error expansion is derived: surprisingly, the first term is proportional to XN-X while residual terms are of order N-1.

Suggested Citation

  • Gobet, Emmanuel & Labart, Céline, 2007. "Error expansion for the discretization of backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 803-829, July.
  • Handle: RePEc:eee:spapps:v:117:y:2007:i:7:p:803-829
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(06)00148-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arturo Kohatsu & Roger Pettersson, 2002. "Variance reduction methods for simulation of densities on Wiener space," Economics Working Papers 597, Department of Economics and Business, Universitat Pompeu Fabra.
    2. Bouchard, Bruno & Touzi, Nizar, 2004. "Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 111(2), pages 175-206, June.
    3. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guangbao Guo, 2018. "Finite Difference Methods for the BSDEs in Finance," IJFS, MDPI, vol. 6(1), pages 1-15, March.
    2. Crisan, D. & Manolarakis, K. & Touzi, N., 2010. "On the Monte Carlo simulation of BSDEs: An improvement on the Malliavin weights," Stochastic Processes and their Applications, Elsevier, vol. 120(7), pages 1133-1158, July.
    3. Balter, Anne G. & Pelsser, Antoon, 2020. "Pricing and hedging in incomplete markets with model uncertainty," European Journal of Operational Research, Elsevier, vol. 282(3), pages 911-925.
    4. Dirk Becherer & Plamen Turkedjiev, 2014. "Multilevel approximation of backward stochastic differential equations," Papers 1412.3140, arXiv.org.
    5. Christian Bender & Nikolaus Schweizer, 2019. "`Regression Anytime' with Brute-Force SVD Truncation," Papers 1908.08264, arXiv.org, revised Oct 2020.
    6. Chol-Kyu Pak & Mun-Chol Kim & Chang-Ho Rim, 2018. "Adapted $\theta$-Scheme and Its Error Estimates for Backward Stochastic Differential Equations," Papers 1808.02173, arXiv.org.
    7. Antonis Papapantoleon & Dylan Possamai & Alexandros Saplaouras, 2021. "Stability of backward stochastic differential equations: the general case," Papers 2107.11048, arXiv.org, revised Apr 2023.
    8. Ioannis Exarchos & Evangelos Theodorou & Panagiotis Tsiotras, 2019. "Stochastic Differential Games: A Sampling Approach via FBSDEs," Dynamic Games and Applications, Springer, vol. 9(2), pages 486-505, June.
    9. Pagès, Gilles & Sagna, Abass, 2018. "Improved error bounds for quantization based numerical schemes for BSDE and nonlinear filtering," Stochastic Processes and their Applications, Elsevier, vol. 128(3), pages 847-883.
    10. Chol-Kyu Pak & Mun-Chol Kim & O Hun, 2018. "A generalized scheme for BSDEs based on derivative approximation and its error estimates," Papers 1808.02478, arXiv.org.
    11. Wei Zhang & Hui Min, 2021. "Weak Convergence Analysis and Improved Error Estimates for Decoupled Forward-Backward Stochastic Differential Equations," Mathematics, MDPI, vol. 9(8), pages 1-15, April.
    12. Ryan Donnelly & Sebastian Jaimungal, 2022. "Exploratory Control with Tsallis Entropy for Latent Factor Models," Papers 2211.07622, arXiv.org, revised Jan 2024.
    13. Naito Riu & Yamada Toshihiro, 2019. "A second-order discretization for forward-backward SDEs using local approximations with Malliavin calculus," Monte Carlo Methods and Applications, De Gruyter, vol. 25(4), pages 341-361, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fujii, Masaaki & Takahashi, Akihiko, 2019. "Solving backward stochastic differential equations with quadratic-growth drivers by connecting the short-term expansions," Stochastic Processes and their Applications, Elsevier, vol. 129(5), pages 1492-1532.
    2. Bouchard Bruno & Tan Xiaolu & Zou Yiyi & Warin Xavier, 2017. "Numerical approximation of BSDEs using local polynomial drivers and branching processes," Monte Carlo Methods and Applications, De Gruyter, vol. 23(4), pages 241-263, December.
    3. Masaaki Fujii & Akihiko Takahashi, 2015. "Perturbative Expansion Technique for Non-linear FBSDEs with Interacting Particle Method," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 22(3), pages 283-304, September.
    4. Giorgia Callegaro & Alessandro Gnoatto & Martino Grasselli, 2021. "A Fully Quantization-based Scheme for FBSDEs," Working Papers 07/2021, University of Verona, Department of Economics.
    5. Andrew Lesniewski & Anja Richter, 2016. "Managing counterparty credit risk via BSDEs," Papers 1608.03237, arXiv.org, revised Aug 2016.
    6. Pelsser Antoon & Gnameho Kossi, 2019. "A Monte Carlo method for backward stochastic differential equations with Hermite martingales," Monte Carlo Methods and Applications, De Gruyter, vol. 25(1), pages 37-60, March.
    7. Stefan Geiss & Emmanuel Gobet, 2010. "Fractional smoothness and applications in finance," Papers 1004.3577, arXiv.org.
    8. Bouchard, Bruno & Touzi, Nizar, 2004. "Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 111(2), pages 175-206, June.
    9. Masaaki Fujii & Akihiko Takahashi & Masayuki Takahashi, 2019. "Asymptotic Expansion as Prior Knowledge in Deep Learning Method for High dimensional BSDEs," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 26(3), pages 391-408, September.
    10. Bouchard, Bruno & Chassagneux, Jean-François, 2008. "Discrete-time approximation for continuously and discretely reflected BSDEs," Stochastic Processes and their Applications, Elsevier, vol. 118(12), pages 2269-2293, December.
    11. Polynice Oyono Ngou & Cody Hyndman, 2014. "A Fourier interpolation method for numerical solution of FBSDEs: Global convergence, stability, and higher order discretizations," Papers 1410.8595, arXiv.org, revised May 2022.
    12. Mastrolia, Thibaut, 2018. "Density analysis of non-Markovian BSDEs and applications to biology and finance," Stochastic Processes and their Applications, Elsevier, vol. 128(3), pages 897-938.
    13. Qiang Han & Shaolin Ji, 2022. "A Multi-Step Algorithm for BSDEs Based On a Predictor-Corrector Scheme and Least-Squares Monte Carlo," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2403-2426, December.
    14. Li, Danping & Shen, Yang & Zeng, Yan, 2018. "Dynamic derivative-based investment strategy for mean–variance asset–liability management with stochastic volatility," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 72-86.
    15. Stefan Geiss & Emmanuel Gobet, 2011. "Fractional smoothness and applications in Finance," Post-Print hal-00474803, HAL.
    16. Jana Bielagk & Arnaud Lionnet & Gonçalo dos Reis, 2015. "Equilibrium pricing under relative performance concerns," Working Papers hal-01245812, HAL.
    17. Richter, Anja, 2014. "Explicit solutions to quadratic BSDEs and applications to utility maximization in multivariate affine stochastic volatility models," Stochastic Processes and their Applications, Elsevier, vol. 124(11), pages 3578-3611.
    18. Abbas-Turki Lokman A. & Bouselmi Aych I. & Mikou Mohammed A., 2014. "Toward a coherent Monte Carlo simulation of CVA," Monte Carlo Methods and Applications, De Gruyter, vol. 20(3), pages 195-216, September.
    19. Monique Jeanblanc & Thibaut Mastrolia & Dylan Possamaï & Anthony Réveillac, 2015. "Utility Maximization With Random Horizon: A Bsde Approach," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(07), pages 1-43, November.
    20. Lorenc Kapllani & Long Teng, 2020. "Deep learning algorithms for solving high dimensional nonlinear backward stochastic differential equations," Papers 2010.01319, arXiv.org, revised Jun 2022.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:117:y:2007:i:7:p:803-829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.