IDEAS home Printed from
   My bibliography  Save this article

Error expansion for the discretization of backward stochastic differential equations


  • Gobet, Emmanuel
  • Labart, Céline


We study the error induced by the time discretization of decoupled forward-backward stochastic differential equations (X,Y,Z). The forward component X is the solution of a Brownian stochastic differential equation and is approximated by a Euler scheme XN with N time steps. The backward component is approximated by a backward scheme. Firstly, we prove that the errors (YN-Y,ZN-Z) measured in the strong Lp-sense (p>=1) are of order N-1/2 (this generalizes the results by Zhang [J. Zhang, A numerical scheme for BSDEs, The Annals of Applied Probability 14 (1) (2004) 459-488]). Secondly, an error expansion is derived: surprisingly, the first term is proportional to XN-X while residual terms are of order N-1.

Suggested Citation

  • Gobet, Emmanuel & Labart, Céline, 2007. "Error expansion for the discretization of backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 803-829, July.
  • Handle: RePEc:eee:spapps:v:117:y:2007:i:7:p:803-829

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Bouchard, Bruno & Touzi, Nizar, 2004. "Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 111(2), pages 175-206, June.
    2. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71.
    3. Arturo Kohatsu & Roger Pettersson, 2002. "Variance reduction methods for simulation of densities on Wiener space," Economics Working Papers 597, Department of Economics and Business, Universitat Pompeu Fabra.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Crisan, D. & Manolarakis, K. & Touzi, N., 2010. "On the Monte Carlo simulation of BSDEs: An improvement on the Malliavin weights," Stochastic Processes and their Applications, Elsevier, vol. 120(7), pages 1133-1158, July.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:117:y:2007:i:7:p:803-829. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.