IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1608.03237.html
   My bibliography  Save this paper

Managing counterparty credit risk via BSDEs

Author

Listed:
  • Andrew Lesniewski
  • Anja Richter

Abstract

We discuss a general dynamic replication approach to counterparty credit risk modeling. This leads to a fundamental jump-process backward stochastic differential equation (BSDE) for the credit risk adjusted portfolio value. We then reduce the fundamental BSDE to a continuous BSDE. Depending on the close out value convention, the reduced fundamental BSDE's solution can be represented explicitly or through an accurate approximate expression. Furthermore, we discuss practical aspects of the approach, important for the its industry applications: (i) efficient numerical methodology for solving a BSDE driven by a moderate number of Brownian motions, and (ii) factor reduction methodology that allows one to approximately replace a portfolio driven by a large number of risk factors with a portfolio driven by a moderate number of risk factors.

Suggested Citation

  • Andrew Lesniewski & Anja Richter, 2016. "Managing counterparty credit risk via BSDEs," Papers 1608.03237, arXiv.org, revised Aug 2016.
  • Handle: RePEc:arx:papers:1608.03237
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1608.03237
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:dau:papers:123456789/9697 is not listed on IDEAS
    2. Chris Kenyon & Andrew Green & Mourad Berrahoui, 2015. "Which measure for PFE? The Risk Appetite Measure, A," Papers 1512.06247, arXiv.org.
    3. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    4. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    5. Bouchard, Bruno & Touzi, Nizar, 2004. "Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 111(2), pages 175-206, June.
    6. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71, January.
    7. Andrew Green & Chris Kenyon, 2014. "KVA: Capital Valuation Adjustment," Papers 1405.0515, arXiv.org, revised Oct 2014.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anastasia Borovykh & Andrea Pascucci & Cornelis W. Oosterlee, 2019. "Efficient Computation of Various Valuation Adjustments Under Local L\'evy Models," Papers 1905.01706, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ioannis Exarchos & Evangelos Theodorou & Panagiotis Tsiotras, 2019. "Stochastic Differential Games: A Sampling Approach via FBSDEs," Dynamic Games and Applications, Springer, vol. 9(2), pages 486-505, June.
    2. Yingming Ge & Lingfei Li & Gongqiu Zhang, 2022. "A Fourier Transform Method for Solving Backward Stochastic Differential Equations," Methodology and Computing in Applied Probability, Springer, vol. 24(1), pages 385-412, March.
    3. Giorgia Callegaro & Alessandro Gnoatto & Martino Grasselli, 2021. "A Fully Quantization-based Scheme for FBSDEs," Working Papers 07/2021, University of Verona, Department of Economics.
    4. Callegaro, Giorgia & Gnoatto, Alessandro & Grasselli, Martino, 2023. "A fully quantization-based scheme for FBSDEs," Applied Mathematics and Computation, Elsevier, vol. 441(C).
    5. Bender, Christian & Denk, Robert, 2007. "A forward scheme for backward SDEs," Stochastic Processes and their Applications, Elsevier, vol. 117(12), pages 1793-1812, December.
    6. Bendera, Christian & Moseler, Thilo, 2008. "Importance sampling for backward SDEs," CoFE Discussion Papers 08/11, University of Konstanz, Center of Finance and Econometrics (CoFE).
    7. Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver -- A neural network based counterparty credit risk management framework," Papers 2005.02633, arXiv.org, revised Dec 2022.
    8. Lokman A. Abbas-Turki & Stéphane Crépey & Babacar Diallo, 2018. "Xva Principles, Nested Monte Carlo Strategies, And Gpu Optimizations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(06), pages 1-40, September.
    9. Akihiro Kaneko, 2023. "Multi-stage Euler-Maruyama methods for backward stochastic differential equations driven by continuous-time Markov chains," Papers 2311.08826, arXiv.org, revised Nov 2023.
    10. Ludkovski, Michael & Young, Virginia R., 2008. "Indifference pricing of pure endowments and life annuities under stochastic hazard and interest rates," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 14-30, February.
    11. Marcel T. P. Van Dijk & Cornelis S. L. De Graaf & Cornelis W. Oosterlee, 2018. "Between ℙ and ℚ: The ℙ ℚ Measure for Pricing in Asset Liability Management," JRFM, MDPI, vol. 11(4), pages 1-23, October.
    12. Bally Vlad & Caramellino Lucia & Zanette Antonino, 2005. "Pricing and hedging American options by Monte Carlo methods using a Malliavin calculus approach," Monte Carlo Methods and Applications, De Gruyter, vol. 11(2), pages 97-133, June.
    13. Steven Kou & Xianhua Peng & Xingbo Xu, 2016. "EM Algorithm and Stochastic Control in Economics," Papers 1611.01767, arXiv.org.
    14. Andrew Green & Chris Kenyon, 2016. "XVA at the Exercise Boundary," Papers 1610.00256, arXiv.org.
    15. W. Ackooij & X. Warin, 2020. "On conditional cuts for stochastic dual dynamic programming," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 173-199, June.
    16. Ewald, Christian Oliver & Nolan, Charles, 2024. "On the adaptation of the Lagrange formalism to continuous time stochastic optimal control: A Lagrange-Chow redux," Journal of Economic Dynamics and Control, Elsevier, vol. 162(C).
    17. Arnaud Porchet & Nizar Touzi & Xavier Warin, 2009. "Valuation of power plants by utility indifference and numerical computation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 70(1), pages 47-75, August.
    18. Aïd, René & Campi, Luciano & Langrené, Nicolas & Pham, Huyên, 2014. "A probabilistic numerical method for optimal multiple switching problems in high dimension," LSE Research Online Documents on Economics 63011, London School of Economics and Political Science, LSE Library.
    19. Christian Bender & Christian Gaertner & Nikolaus Schweizer, 2016. "Pathwise Iteration for Backward SDEs," Papers 1605.07500, arXiv.org, revised Jun 2016.
    20. Andrew Green & Chris Kenyon, 2014. "MVA: Initial Margin Valuation Adjustment by Replication and Regression," Papers 1405.0508, arXiv.org, revised Jan 2015.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1608.03237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.