IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v162y2024ics0165188924000472.html
   My bibliography  Save this article

On the adaptation of the Lagrange formalism to continuous time stochastic optimal control: A Lagrange-Chow redux

Author

Listed:
  • Ewald, Christian Oliver
  • Nolan, Charles

Abstract

We show how the classical Lagrangian approach to solving constrained optimization problems from standard calculus can be extended to solve continuous time stochastic optimal control problems. Connections to mainstream approaches such as the Hamilton-Jacobi-Bellman equation and the stochastic maximum principle are drawn. Our approach is linked to the stochastic maximum principle, but more direct and tied to the classical Lagrangian principle, avoiding the use of backward stochastic differential equations in its formulation. Using infinite dimensional functional analysis, we formalize and extend the approach first outlined in Chow (1992) within a rigorous mathematical setting using infinite dimensional functional analysis. We provide examples that demonstrate the usefulness and effectiveness of our approach in practice. Further, we demonstrate the potential for numerical applications facilitating some of our key equations in combination with Monte Carlo backward simulation and linear regression, therefore illustrating a completely different and new avenue for the numerical application of Chow's methods.

Suggested Citation

  • Ewald, Christian Oliver & Nolan, Charles, 2024. "On the adaptation of the Lagrange formalism to continuous time stochastic optimal control: A Lagrange-Chow redux," Journal of Economic Dynamics and Control, Elsevier, vol. 162(C).
  • Handle: RePEc:eee:dyncon:v:162:y:2024:i:c:s0165188924000472
    DOI: 10.1016/j.jedc.2024.104855
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165188924000472
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jedc.2024.104855?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chow, Gregory C., 1997. "Dynamic Economics: Optimization by the Lagrange Method," OUP Catalogue, Oxford University Press, number 9780195101928, Decembrie.
    2. Chow, Gregory C., 1992. "Dynamic optimization without dynamic programming," Economic Modelling, Elsevier, vol. 9(1), pages 3-9, January.
    3. Love, C. E. & Turner, M., 1993. "Note on utilizing stochastic optimal control in aggregate production planning," European Journal of Operational Research, Elsevier, vol. 65(2), pages 199-206, March.
    4. Frank H. Clarke, 1976. "A New Approach to Lagrange Multipliers," Mathematics of Operations Research, INFORMS, vol. 1(2), pages 165-174, May.
    5. Kwan, Yum K. & Chow, Gregory C., 1997. "Chow's method of optimal control: A numerical solution," Journal of Economic Dynamics and Control, Elsevier, vol. 21(4-5), pages 739-752, May.
    6. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    7. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    8. Neck, Reinhard, 1984. "Stochastic control theory and operational research," European Journal of Operational Research, Elsevier, vol. 17(3), pages 283-301, September.
    9. Woerner, Stefan & Laumanns, Marco & Zenklusen, Rico & Fertis, Apostolos, 2015. "Approximate dynamic programming for stochastic linear control problems on compact state spaces," European Journal of Operational Research, Elsevier, vol. 241(1), pages 85-98.
    10. Bismut, Jean-Michel, 1975. "Growth and optimal intertemporal allocation of risks," Journal of Economic Theory, Elsevier, vol. 10(2), pages 239-257, April.
    11. Chow, Gregory C., 1993. "Optimal control without solving the Bellman equation," Journal of Economic Dynamics and Control, Elsevier, vol. 17(4), pages 621-630, July.
    12. Ma, Jingtang & Li, Wenyuan & Zheng, Harry, 2020. "Dual control Monte-Carlo method for tight bounds of value function under Heston stochastic volatility model," European Journal of Operational Research, Elsevier, vol. 280(2), pages 428-440.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
    2. Work, James & Hauer, Grant & Luckert, M.K. (Marty), 2018. "What ethanol prices would induce growers to switch from agriculture to poplar in Alberta? A multiple options approach," Journal of Forest Economics, Elsevier, vol. 33(C), pages 51-62.
    3. Kathrin Glau & Ricardo Pachon & Christian Potz, 2019. "Speed-up credit exposure calculations for pricing and risk management," Papers 1912.01280, arXiv.org.
    4. Dong, Wenfeng & Kang, Boda, 2019. "Analysis of a multiple year gas sales agreement with make-up, carry-forward and indexation," Energy Economics, Elsevier, vol. 79(C), pages 76-96.
    5. Pringles, Rolando & Olsina, Fernando & Penizzotto, Franco, 2020. "Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method," Renewable Energy, Elsevier, vol. 151(C), pages 846-864.
    6. Gabriel J Power & Charli D. Tandja M. & Josée Bastien & Philippe Grégoire, 2015. "Measuring infrastructure investment option value," Journal of Risk Finance, Emerald Group Publishing, vol. 16(1), pages 49-72, January.
    7. O. Samimi & Z. Mardani & S. Sharafpour & F. Mehrdoust, 2017. "LSM Algorithm for Pricing American Option Under Heston–Hull–White’s Stochastic Volatility Model," Computational Economics, Springer;Society for Computational Economics, vol. 50(2), pages 173-187, August.
    8. Mo, Jian-Lei & Schleich, Joachim & Zhu, Lei & Fan, Ying, 2015. "Delaying the introduction of emissions trading systems—Implications for power plant investment and operation from a multi-stage decision model," Energy Economics, Elsevier, vol. 52(PB), pages 255-264.
    9. Song-Ping Zhu & Xin-Jiang He, 2018. "A hybrid computational approach for option pricing," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-16, September.
    10. Xuemei Gao & Dongya Deng & Yue Shan, 2014. "Lattice Methods for Pricing American Strangles with Two-Dimensional Stochastic Volatility Models," Discrete Dynamics in Nature and Society, Hindawi, vol. 2014, pages 1-6, April.
    11. Marcelo G. Figueroa, 2006. "Pricing Multiple Interruptible-Swing Contracts," Birkbeck Working Papers in Economics and Finance 0606, Birkbeck, Department of Economics, Mathematics & Statistics.
    12. Abdullah Almansour and Margaret Insley, 2016. "The Impact of Stochastic Extraction Cost on the Value of an Exhaustible Resource: An Application to the Alberta Oil Sands," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    13. Lars Stentoft, 2008. "American Option Pricing Using GARCH Models and the Normal Inverse Gaussian Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 540-582, Fall.
    14. Jungmin An & Dong-Kwan Kim & Jinyeong Lee & Sung-Kwan Joo, 2021. "Least Squares Monte Carlo Simulation-Based Decision-Making Method for Photovoltaic Investment in Korea," Sustainability, MDPI, vol. 13(19), pages 1-14, September.
    15. Chi H. Truong, 2014. "A Two Factor Model for Water Prices and Its Implications for Evaluating Real Options and Other Water Price Derivatives," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 62(1), pages 23-45, March.
    16. Piotr Komański & Oskar Sokoliński, 2015. "Least-Squares Monte Carlo Simulation for Time Value of Options and Guarantees Calculation," Ekonomia journal, Faculty of Economic Sciences, University of Warsaw, vol. 41.
    17. Augusto Castillo, 2004. "Firm and Corporate Bond Valuation: A Simulation Dynamic Programming Approach," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 41(124), pages 345-360.
    18. Zineb El Filali Ech-Chafiq & Pierre Henry-Labordere & Jérôme Lelong, 2021. "Pricing Bermudan options using regression trees/random forests," Working Papers hal-03436046, HAL.
    19. Joseph Y. J. Chow & Amelia C. Regan, 2011. "Real Option Pricing of Network Design Investments," Transportation Science, INFORMS, vol. 45(1), pages 50-63, February.
    20. Denis Belomestny & Grigori Milstein & Vladimir Spokoiny, 2009. "Regression methods in pricing American and Bermudan options using consumption processes," Quantitative Finance, Taylor & Francis Journals, vol. 9(3), pages 315-327.

    More about this item

    Keywords

    Lagrange formalism; Continuous optimization; Dynamic programming; Economic growth models; Stochastic processes; Optimal control; Regression-based Monte Carlo methods;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C65 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Miscellaneous Mathematical Tools
    • E22 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Investment; Capital; Intangible Capital; Capacity

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:162:y:2024:i:c:s0165188924000472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jedc .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.