IDEAS home Printed from https://ideas.repec.org/a/spr/eurjco/v8y2020i2d10.1007_s13675-020-00123-y.html
   My bibliography  Save this article

On conditional cuts for stochastic dual dynamic programming

Author

Listed:
  • W. Ackooij

    (OSIRIS)

  • X. Warin

    (OSIRIS)

Abstract

Multistage stochastic programs arise in many applications from engineering whenever a set of inventories or stocks has to be valued. Such is the case in seasonal storage valuation of a set of cascaded reservoir chains in hydro management. A popular method is stochastic dual dynamic programming (SDDP), especially when the dimensionality of the problem is large and dynamic programming is no longer an option. The usual assumption of SDDP is that uncertainty is stage-wise independent, which is highly restrictive from a practical viewpoint. When possible, the usual remedy is to increase the state-space to account for some degree of dependency. In applications, this may not be possible or it may increase the state-space by too much. In this paper, we present an alternative based on keeping a functional dependency in the SDDP—cuts related to the conditional expectations in the dynamic programming equations. Our method is based on popular methodology in mathematical finance, where it has progressively replaced scenario trees due to superior numerical performance. We demonstrate the interest of combining this way of handling dependency in uncertainty and SDDP on a set of numerical examples. Our method is readily available in the open-source software package StOpt.

Suggested Citation

  • W. Ackooij & X. Warin, 2020. "On conditional cuts for stochastic dual dynamic programming," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 173-199, June.
  • Handle: RePEc:spr:eurjco:v:8:y:2020:i:2:d:10.1007_s13675-020-00123-y
    DOI: 10.1007/s13675-020-00123-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13675-020-00123-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13675-020-00123-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Homem-de-Mello, Tito & Pagnoncelli, Bernardo K., 2016. "Risk aversion in multistage stochastic programming: A modeling and algorithmic perspective," European Journal of Operational Research, Elsevier, vol. 249(1), pages 188-199.
    2. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    3. Shapiro, Alexander & Tekaya, Wajdi & da Costa, Joari Paulo & Soares, Murilo Pereira, 2013. "Risk neutral and risk averse Stochastic Dual Dynamic Programming method," European Journal of Operational Research, Elsevier, vol. 224(2), pages 375-391.
    4. Bouchard, Bruno & Touzi, Nizar, 2004. "Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 111(2), pages 175-206, June.
    5. repec:dau:papers:123456789/4273 is not listed on IDEAS
    6. Christophe Barrera-Esteve & Florent Bergeret & Charles Dossal & Emmanuel Gobet & Asma Meziou & Rémi Munos & Damien Reboul-Salze, 2006. "Numerical Methods for the Pricing of Swing Options: A Stochastic Control Approach," Methodology and Computing in Applied Probability, Springer, vol. 8(4), pages 517-540, December.
    7. Vincent Guigues, 2014. "SDDP for some interstage dependent risk-averse problems and application to hydro-thermal planning," Computational Optimization and Applications, Springer, vol. 57(1), pages 167-203, January.
    8. K. Linowsky & A. B. Philpott, 2005. "On the Convergence of Sampling-Based Decomposition Algorithms for Multistage Stochastic Programs," Journal of Optimization Theory and Applications, Springer, vol. 125(2), pages 349-366, May.
    9. Vitor L. de Matos & David P. Morton & Erlon C. Finardi, 2017. "Assessing policy quality in a multistage stochastic program for long-term hydrothermal scheduling," Annals of Operations Research, Springer, vol. 253(2), pages 713-731, June.
    10. Shapiro, Alexander, 2011. "Analysis of stochastic dual dynamic programming method," European Journal of Operational Research, Elsevier, vol. 209(1), pages 63-72, February.
    11. Raimund Kovacevic & Alois Pichler, 2015. "Tree approximation for discrete time stochastic processes: a process distance approach," Annals of Operations Research, Springer, vol. 235(1), pages 395-421, December.
    12. Rene Carmona & Michael Ludkovski, 2010. "Valuation of energy storage: an optimal switching approach," Quantitative Finance, Taylor & Francis Journals, vol. 10(4), pages 359-374.
    13. Wim Ackooij & Jérôme Malick, 2016. "Decomposition algorithm for large-scale two-stage unit-commitment," Annals of Operations Research, Springer, vol. 238(1), pages 587-613, March.
    14. Eric Fournié & Jean-Michel Lasry & Pierre-Louis Lions & Jérôme Lebuchoux & Nizar Touzi, 1999. "Applications of Malliavin calculus to Monte Carlo methods in finance," Finance and Stochastics, Springer, vol. 3(4), pages 391-412.
    15. Wim Ackooij & Welington Oliveira & Yongjia Song, 2019. "On level regularization with normal solutions in decomposition methods for multistage stochastic programming problems," Computational Optimization and Applications, Springer, vol. 74(1), pages 1-42, September.
    16. Wim Ackooij & Jérôme Malick, 2016. "Decomposition algorithm for large-scale two-stage unit-commitment," Annals of Operations Research, Springer, vol. 238(1), pages 587-613, March.
    17. Georg Ch Pflug & Werner Römisch, 2007. "Modeling, Measuring and Managing Risk," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 6478, January.
    18. Davi Valladão & Thuener Silva & Marcus Poggi, 2019. "Time-consistent risk-constrained dynamic portfolio optimization with transactional costs and time-dependent returns," Annals of Operations Research, Springer, vol. 282(1), pages 379-405, November.
    19. repec:dau:papers:123456789/5524 is not listed on IDEAS
    20. Patrick Henaff & Ismail Laachir & Francesco Russo, 2013. "Gas storage valuation and hedging. A quantification of the model risk," Papers 1312.3789, arXiv.org.
    21. Eric Fournié & Jean-Michel Lasry & Pierre-Louis Lions & Jérôme Lebuchoux, 2001. "Applications of Malliavin calculus to Monte-Carlo methods in finance. II," Finance and Stochastics, Springer, vol. 5(2), pages 201-236.
    22. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    23. Ruszczynski, Andrzej & Swietanowski, Artur, 1997. "Accelerating the regularized decomposition method for two stage stochastic linear problems," European Journal of Operational Research, Elsevier, vol. 101(2), pages 328-342, September.
    24. Wim van Ackooij & Welington de Oliveira & Yongjia Song, 2018. "Adaptive Partition-Based Level Decomposition Methods for Solving Two-Stage Stochastic Programs with Fixed Recourse," INFORMS Journal on Computing, INFORMS, vol. 30(1), pages 57-70, February.
    25. Z. L. Chen & W. B. Powell, 1999. "Convergent Cutting-Plane and Partial-Sampling Algorithm for Multistage Stochastic Linear Programs with Recourse," Journal of Optimization Theory and Applications, Springer, vol. 102(3), pages 497-524, September.
    26. repec:dau:papers:123456789/11531 is not listed on IDEAS
    27. John R. Birge, 1985. "Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs," Operations Research, INFORMS, vol. 33(5), pages 989-1007, October.
    28. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    29. Philpott, A.B. & de Matos, V.L., 2012. "Dynamic sampling algorithms for multi-stage stochastic programs with risk aversion," European Journal of Operational Research, Elsevier, vol. 218(2), pages 470-483.
    30. Guigues, Vincent & Sagastizábal, Claudia, 2012. "The value of rolling-horizon policies for risk-averse hydro-thermal planning," European Journal of Operational Research, Elsevier, vol. 217(1), pages 129-140.
    31. P. Girardeau & V. Leclere & A. B. Philpott, 2015. "On the Convergence of Decomposition Methods for Multistage Stochastic Convex Programs," Mathematics of Operations Research, INFORMS, vol. 40(1), pages 130-145, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wim Ackooij & Welington Oliveira & Yongjia Song, 2019. "On level regularization with normal solutions in decomposition methods for multistage stochastic programming problems," Computational Optimization and Applications, Springer, vol. 74(1), pages 1-42, September.
    2. Murwan Siddig & Yongjia Song, 2022. "Adaptive partition-based SDDP algorithms for multistage stochastic linear programming with fixed recourse," Computational Optimization and Applications, Springer, vol. 81(1), pages 201-250, January.
    3. Soares, Murilo Pereira & Street, Alexandre & Valladão, Davi Michel, 2017. "On the solution variability reduction of Stochastic Dual Dynamic Programming applied to energy planning," European Journal of Operational Research, Elsevier, vol. 258(2), pages 743-760.
    4. de Queiroz, Anderson Rodrigo, 2016. "Stochastic hydro-thermal scheduling optimization: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 382-395.
    5. Andre Luiz Diniz & Maria Elvira P. Maceira & Cesar Luis V. Vasconcellos & Debora Dias J. Penna, 2020. "A combined SDDP/Benders decomposition approach with a risk-averse surface concept for reservoir operation in long term power generation planning," Annals of Operations Research, Springer, vol. 292(2), pages 649-681, September.
    6. Bally Vlad & Caramellino Lucia & Zanette Antonino, 2005. "Pricing and hedging American options by Monte Carlo methods using a Malliavin calculus approach," Monte Carlo Methods and Applications, De Gruyter, vol. 11(2), pages 97-133, June.
    7. Zhou, Shaorui & Zhang, Hui & Shi, Ning & Xu, Zhou & Wang, Fan, 2020. "A new convergent hybrid learning algorithm for two-stage stochastic programs," European Journal of Operational Research, Elsevier, vol. 283(1), pages 33-46.
    8. Lorenzo Reus & Rodolfo Prado, 2022. "Need to Meet Investment Goals? Track Synthetic Indexes with the SDDP Method," Computational Economics, Springer;Society for Computational Economics, vol. 60(1), pages 47-69, June.
    9. Michelle Bandarra & Vincent Guigues, 2021. "Single cut and multicut stochastic dual dynamic programming with cut selection for multistage stochastic linear programs: convergence proof and numerical experiments," Computational Management Science, Springer, vol. 18(2), pages 125-148, June.
    10. Lorenzo Reus & Guillermo Alexander Sepúlveda-Hurtado, 2023. "Foreign exchange trading and management with the stochastic dual dynamic programming method," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-38, December.
    11. Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).
    12. Vincent Guigues, 2014. "SDDP for some interstage dependent risk-averse problems and application to hydro-thermal planning," Computational Optimization and Applications, Springer, vol. 57(1), pages 167-203, January.
    13. Moez Mrad & Nizar Touzi & Amina Zeghal, 2006. "Monte Carlo Estimation of a Joint Density Using Malliavin Calculus, and Application to American Options," Computational Economics, Springer;Society for Computational Economics, vol. 27(4), pages 497-531, June.
    14. Pritchard, Geoffrey, 2015. "Stochastic inflow modeling for hydropower scheduling problems," European Journal of Operational Research, Elsevier, vol. 246(2), pages 496-504.
    15. Powell, Warren B., 2019. "A unified framework for stochastic optimization," European Journal of Operational Research, Elsevier, vol. 275(3), pages 795-821.
    16. Thuener Silva & Davi Valladão & Tito Homem-de-Mello, 2021. "A data-driven approach for a class of stochastic dynamic optimization problems," Computational Optimization and Applications, Springer, vol. 80(3), pages 687-729, December.
    17. Lee, Jinkyu & Bae, Sanghyeon & Kim, Woo Chang & Lee, Yongjae, 2023. "Value function gradient learning for large-scale multistage stochastic programming problems," European Journal of Operational Research, Elsevier, vol. 308(1), pages 321-335.
    18. Anne Laure Bronstein & Gilles Pagès & Jacques Portès, 2013. "Multi-asset American Options and Parallel Quantization," Methodology and Computing in Applied Probability, Springer, vol. 15(3), pages 547-561, September.
    19. Guigues, Vincent & Juditsky, Anatoli & Nemirovski, Arkadi, 2021. "Constant Depth Decision Rules for multistage optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 295(1), pages 223-232.
    20. Davi Valladão & Thuener Silva & Marcus Poggi, 2019. "Time-consistent risk-constrained dynamic portfolio optimization with transactional costs and time-dependent returns," Annals of Operations Research, Springer, vol. 282(1), pages 379-405, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurjco:v:8:y:2020:i:2:d:10.1007_s13675-020-00123-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.