IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v292y2020i2d10.1007_s10479-019-03419-4.html
   My bibliography  Save this article

A combined SDDP/Benders decomposition approach with a risk-averse surface concept for reservoir operation in long term power generation planning

Author

Listed:
  • Andre Luiz Diniz

    () (CEPEL, Brazilian Electric Energy Research Center
    UERJ - State University of Rio de Janeiro)

  • Maria Elvira P. Maceira

    (CEPEL, Brazilian Electric Energy Research Center
    UERJ - State University of Rio de Janeiro)

  • Cesar Luis V. Vasconcellos

    (CEPEL, Brazilian Electric Energy Research Center)

  • Debora Dias J. Penna

    (CEPEL, Brazilian Electric Energy Research Center)

Abstract

Power generation planning in hydrothermal systems is a complex optimization task, specially due to the high uncertainty in the inflows to hydro plants. Since it is impossible to traverse the huge scenario tree of the multistage problem, stochastic dual dynamic programming (SDDP) is the leading technique to solve it, originally from an expected-cost minimization perspective. However, there is a growing need to apply risk-averse/robust formulations to protect the system from critical hydrological scenarios. This is particularly important for predominantly hydro systems, because environmental issues prevent the construction of large reservoirs, thus reducing their water regulating capability. This paper proposes a two-level SDDP/Benders decomposition approach to include a new risk averse surface (RAS) concept for reservoir operation in power generation planning. The upper level problem is a SDDP solving strategy with expected-cost minimization criterion, where recourse functions for each time step are built through forward/backward passes. The second level consists in multi-period deterministic optimization subproblems for each node of the scenario tree, which are solved to ensure a desired level of protection from a set of given critical scenario several months ahead. An inner iterative procedure for each SDDP stage/scenario is applied, where feasibility cuts are included in the upper level subproblems to derive the RAS surface, which are multidimensional rule curves for reservoir operation. Such curves ensure that the policy provided by the SDDP algorithm yields storage levels in the reservoirs that are high enough to protect the system against such critical scenarios. A “max-type” time-linking penalization scheme for violation of RAS constraints is also proposed, which avoids the multiple application of the penalty value for the same violation in consecutive time steps, which may result in large marginal costs. Results are presented for the large-scale Brazilian system.

Suggested Citation

  • Andre Luiz Diniz & Maria Elvira P. Maceira & Cesar Luis V. Vasconcellos & Debora Dias J. Penna, 2020. "A combined SDDP/Benders decomposition approach with a risk-averse surface concept for reservoir operation in long term power generation planning," Annals of Operations Research, Springer, vol. 292(2), pages 649-681, September.
  • Handle: RePEc:spr:annopr:v:292:y:2020:i:2:d:10.1007_s10479-019-03419-4
    DOI: 10.1007/s10479-019-03419-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-019-03419-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Homem-de-Mello, Tito & Pagnoncelli, Bernardo K., 2016. "Risk aversion in multistage stochastic programming: A modeling and algorithmic perspective," European Journal of Operational Research, Elsevier, vol. 249(1), pages 188-199.
    2. Shapiro, Alexander & Tekaya, Wajdi & da Costa, Joari Paulo & Soares, Murilo Pereira, 2013. "Risk neutral and risk averse Stochastic Dual Dynamic Programming method," European Journal of Operational Research, Elsevier, vol. 224(2), pages 375-391.
    3. Pierre Carpentier & Jean-Philippe Chancelier & Guy Cohen & Michel Lara & Pierre Girardeau, 2012. "Dynamic consistency for stochastic optimal control problems," Annals of Operations Research, Springer, vol. 200(1), pages 247-263, November.
    4. Jesús Latorre & Santiago Cerisola & Andrés Ramos & Rafael Palacios, 2009. "Analysis of stochastic problem decomposition algorithms in computational grids," Annals of Operations Research, Springer, vol. 166(1), pages 355-373, February.
    5. Pritchard, Geoffrey, 2015. "Stochastic inflow modeling for hydropower scheduling problems," European Journal of Operational Research, Elsevier, vol. 246(2), pages 496-504.
    6. Vitor L. de Matos & David P. Morton & Erlon C. Finardi, 2017. "Assessing policy quality in a multistage stochastic program for long-term hydrothermal scheduling," Annals of Operations Research, Springer, vol. 253(2), pages 713-731, June.
    7. Dias, Bruno Henriques & Tomim, Marcelo Aroca & Marcato, André Luís Marques & Ramos, Tales Pulinho & Brandi, Rafael Bruno S. & Junior, Ivo Chaves da Silva & Filho, João Alberto Passos, 2013. "Parallel computing applied to the stochastic dynamic programming for long term operation planning of hydrothermal power systems," European Journal of Operational Research, Elsevier, vol. 229(1), pages 212-222.
    8. Rudloff, Birgit & Street, Alexandre & Valladão, Davi M., 2014. "Time consistency and risk averse dynamic decision models: Definition, interpretation and practical consequences," European Journal of Operational Research, Elsevier, vol. 234(3), pages 743-750.
    9. Andy Philpott & Vitor de Matos & Erlon Finardi, 2013. "On Solving Multistage Stochastic Programs with Coherent Risk Measures," Operations Research, INFORMS, vol. 61(4), pages 957-970, August.
    10. L. A. Terry & M. V. F. Pereira & T. A. Araripe Neto & L. F. C. A. Silva & P. R. H. Sales, 1986. "Coordinating the Energy Generation of the Brazilian National Hydrothermal Electrical Generating System," Interfaces, INFORMS, vol. 16(1), pages 16-38, February.
    11. Andrieu, L. & Henrion, R. & Römisch, W., 2010. "A model for dynamic chance constraints in hydro power reservoir management," European Journal of Operational Research, Elsevier, vol. 207(2), pages 579-589, December.
    12. M.A.H. Dempster & R.T. Thompson, 1999. "EVPI‐based importance sampling solution proceduresfor multistage stochastic linear programmeson parallel MIMD architectures," Annals of Operations Research, Springer, vol. 90(0), pages 161-184, January.
    13. Lohmann, Timo & Hering, Amanda S. & Rebennack, Steffen, 2016. "Spatio-temporal hydro forecasting of multireservoir inflows for hydro-thermal scheduling," European Journal of Operational Research, Elsevier, vol. 255(1), pages 243-258.
    14. Z. L. Chen & W. B. Powell, 1999. "Convergent Cutting-Plane and Partial-Sampling Algorithm for Multistage Stochastic Linear Programs with Recourse," Journal of Optimization Theory and Applications, Springer, vol. 102(3), pages 497-524, September.
    15. Ricardo Collado & Dávid Papp & Andrzej Ruszczyński, 2012. "Scenario decomposition of risk-averse multistage stochastic programming problems," Annals of Operations Research, Springer, vol. 200(1), pages 147-170, November.
    16. John R. Birge, 1985. "Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs," Operations Research, INFORMS, vol. 33(5), pages 989-1007, October.
    17. Philpott, A.B. & de Matos, V.L., 2012. "Dynamic sampling algorithms for multi-stage stochastic programs with risk aversion," European Journal of Operational Research, Elsevier, vol. 218(2), pages 470-483.
    18. András Prékopa, 2012. "Multivariate value at risk and related topics," Annals of Operations Research, Springer, vol. 193(1), pages 49-69, March.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:292:y:2020:i:2:d:10.1007_s10479-019-03419-4. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Springer Nature Abstracting and Indexing). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.