IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v61y2013i4p957-970.html
   My bibliography  Save this article

On Solving Multistage Stochastic Programs with Coherent Risk Measures

Author

Listed:
  • Andy Philpott

    () (Electric Power Optimization Centre, Department of Engineering Science, University of Auckland, Auckland, 1142, New Zealand)

  • Vitor de Matos

    () (Plan4 Engenharia SS, Florianópolis-SC, 88034-160, Brazil)

  • Erlon Finardi

    () (Laboratório de Planejamento em Sistemas de Energia Elétrica, Universidade Federal de Santa Catarina, Florianópolis-SC, 88040-900, Brazil)

Abstract

We consider a class of multistage stochastic linear programs in which at each stage a coherent risk measure of future costs is to be minimized. A general computational approach based on dynamic programming is derived that can be shown to converge to an optimal policy. By computing an inner approximation to future cost functions, we can evaluate an upper bound on the cost of an optimal policy, and an outer approximation delivers a lower bound. The approach we describe is particularly useful in sampling-based algorithms, and a numerical example is provided to show the efficacy of the methodology when used in conjunction with stochastic dual dynamic programming.

Suggested Citation

  • Andy Philpott & Vitor de Matos & Erlon Finardi, 2013. "On Solving Multistage Stochastic Programs with Coherent Risk Measures," Operations Research, INFORMS, vol. 61(4), pages 957-970, August.
  • Handle: RePEc:inm:oropre:v:61:y:2013:i:4:p:957-970
    DOI: 10.1287/opre.2013.1175
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.2013.1175
    Download Restriction: no

    References listed on IDEAS

    as
    1. Shapiro, Alexander & Tekaya, Wajdi & da Costa, Joari Paulo & Soares, Murilo Pereira, 2013. "Risk neutral and risk averse Stochastic Dual Dynamic Programming method," European Journal of Operational Research, Elsevier, vol. 224(2), pages 375-391.
    2. Shapiro, Alexander, 2011. "Analysis of stochastic dual dynamic programming method," European Journal of Operational Research, Elsevier, vol. 209(1), pages 63-72, February.
    3. Riedel, Frank, 2004. "Dynamic coherent risk measures," Stochastic Processes and their Applications, Elsevier, vol. 112(2), pages 185-200, August.
    4. David R. Cariño & Terry Kent & David H. Myers & Celine Stacy & Mike Sylvanus & Andrew L. Turner & Kouji Watanabe & William T. Ziemba, 1994. "The Russell-Yasuda Kasai Model: An Asset/Liability Model for a Japanese Insurance Company Using Multistage Stochastic Programming," Interfaces, INFORMS, vol. 24(1), pages 29-49, February.
    5. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    6. Philpott, A.B. & de Matos, V.L., 2012. "Dynamic sampling algorithms for multi-stage stochastic programs with risk aversion," European Journal of Operational Research, Elsevier, vol. 218(2), pages 470-483.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Powell, Warren B., 2019. "A unified framework for stochastic optimization," European Journal of Operational Research, Elsevier, vol. 275(3), pages 795-821.
    2. Daniel R. Jiang & Warren B. Powell, 2018. "Risk-Averse Approximate Dynamic Programming with Quantile-Based Risk Measures," Mathematics of Operations Research, INFORMS, vol. 43(2), pages 554-579, May.
    3. Weini Zhang & Hamed Rahimian & Güzin Bayraksan, 2016. "Decomposition Algorithms for Risk-Averse Multistage Stochastic Programs with Application to Water Allocation under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 385-404, August.
    4. Mahmutoğulları, Ali İrfan & Çavuş, Özlem & Aktürk, M. Selim, 2018. "Bounds on risk-averse mixed-integer multi-stage stochastic programming problems with mean-CVaR," European Journal of Operational Research, Elsevier, vol. 266(2), pages 595-608.
    5. Dan A. Iancu & Marek Petrik & Dharmashankar Subramanian, 2015. "Tight Approximations of Dynamic Risk Measures," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 655-682, March.
    6. Reus, Lorenzo & Pagnoncelli, Bernardo & Armstrong, Margaret, 2019. "Better management of production incidents in mining using multistage stochastic optimization," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    7. Moret, Fabio & Pinson, Pierre & Papakonstantinou, Athanasios, 2020. "Heterogeneous risk preferences in community-based electricity markets," European Journal of Operational Research, Elsevier, vol. 287(1), pages 36-48.
    8. Volker Krätschmer & Marcel Ladkau & Roger J. A. Laeven & John G. M. Schoenmakers & Mitja Stadje, 2018. "Optimal Stopping Under Uncertainty in Drift and Jump Intensity," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1177-1209, November.
    9. Schur, Rouven & Gönsch, Jochen & Hassler, Michael, 2019. "Time-consistent, risk-averse dynamic pricing," European Journal of Operational Research, Elsevier, vol. 277(2), pages 587-603.
    10. Bernardo K. Pagnoncelli & Adriana Piazza, 2017. "The optimal harvesting problem under price uncertainty: the risk averse case," Annals of Operations Research, Springer, vol. 258(2), pages 479-502, November.
    11. Alois Pichler, 2017. "A quantitative comparison of risk measures," Annals of Operations Research, Springer, vol. 254(1), pages 251-275, July.
    12. Alonso-Ayuso, Antonio & Escudero, Laureano F. & Guignard, Monique & Weintraub, Andres, 2018. "Risk management for forestry planning under uncertainty in demand and prices," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1051-1074.
    13. Alois Pichler & Ruben Schlotter, 2020. "Quantification of Risk in Classical Models of Finance," Papers 2004.04397, arXiv.org, revised Jul 2020.
    14. Borgonovo, E. & Cappelli, V. & Maccheroni, F. & Marinacci, M., 2018. "Risk analysis and decision theory: A bridge," European Journal of Operational Research, Elsevier, vol. 264(1), pages 280-293.
    15. Dominic White & Niven Winchester, 2018. "Energy- and multi-sector modelling of climate change mitigation in New Zealand: current practice and future needs," Working Papers 18_15, Motu Economic and Public Policy Research.
    16. Liu, Rui Peng & Shapiro, Alexander, 2020. "Risk neutral reformulation approach to risk averse stochastic programming," European Journal of Operational Research, Elsevier, vol. 286(1), pages 21-31.
    17. A. B. Philpott & V. L. Matos & L. Kapelevich, 2018. "Distributionally robust SDDP," Computational Management Science, Springer, vol. 15(3), pages 431-454, October.
    18. Andre Luiz Diniz & Maria Elvira P. Maceira & Cesar Luis V. Vasconcellos & Debora Dias J. Penna, 2020. "A combined SDDP/Benders decomposition approach with a risk-averse surface concept for reservoir operation in long term power generation planning," Annals of Operations Research, Springer, vol. 292(2), pages 649-681, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:61:y:2013:i:4:p:957-970. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matthew Walls). General contact details of provider: http://edirc.repec.org/data/inforea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.