IDEAS home Printed from
   My bibliography  Save this article

A model for dynamic chance constraints in hydro power reservoir management


  • Andrieu, L.
  • Henrion, R.
  • Römisch, W.


In this paper, a model for (joint) dynamic chance constraints is proposed and applied to an optimization problem in water reservoir management. The model relies on discretization of the decision variables but keeps the probability distribution continuous. Our approach relies on calculating probabilities of rectangles which is particularly useful in the presence of independent random variables but works equally well in the case of correlated variables. Numerical results are provided for two and three stages.

Suggested Citation

  • Andrieu, L. & Henrion, R. & Römisch, W., 2010. "A model for dynamic chance constraints in hydro power reservoir management," European Journal of Operational Research, Elsevier, vol. 207(2), pages 579-589, December.
  • Handle: RePEc:eee:ejores:v:207:y:2010:i:2:p:579-589

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. N.C.P. Edirisinghe & E.I. Patterson & N. Saadouli, 2000. "Capacity Planning Model for a Multipurpose Water Reservoir with Target-Priority Operation," Annals of Operations Research, Springer, vol. 100(1), pages 273-303, December.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. I. Bremer & R. Henrion & A. Möller, 2015. "Probabilistic constraints via SQP solver: application to a renewable energy management problem," Computational Management Science, Springer, vol. 12(3), pages 435-459, July.
    2. Minjiao Zhang & Simge Küçükyavuz & Saumya Goel, 2014. "A Branch-and-Cut Method for Dynamic Decision Making Under Joint Chance Constraints," Management Science, INFORMS, vol. 60(5), pages 1317-1333, May.
    3. Alessandro Balata & Michael Ludkovski & Aditya Maheshwari & Jan Palczewski, 2019. "Statistical Learning for Probability-Constrained Stochastic Optimal Control," Papers 1905.00107,, revised Aug 2020.
    4. Guigues, Vincent & Sagastizábal, Claudia, 2012. "The value of rolling-horizon policies for risk-averse hydro-thermal planning," European Journal of Operational Research, Elsevier, vol. 217(1), pages 129-140.
    5. Michel Minoux & Riadh Zorgati, 2019. "Sharp upper and lower bounds for maximum likelihood solutions to random Gaussian bilateral inequality systems," Journal of Global Optimization, Springer, vol. 75(3), pages 735-766, November.
    6. Andre Luiz Diniz & Maria Elvira P. Maceira & Cesar Luis V. Vasconcellos & Debora Dias J. Penna, 2020. "A combined SDDP/Benders decomposition approach with a risk-averse surface concept for reservoir operation in long term power generation planning," Annals of Operations Research, Springer, vol. 292(2), pages 649-681, September.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:207:y:2010:i:2:p:579-589. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.