IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v12y2015i3p435-459.html
   My bibliography  Save this article

Probabilistic constraints via SQP solver: application to a renewable energy management problem

Author

Listed:
  • I. Bremer
  • R. Henrion
  • A. Möller

Abstract

This paper aims at illustrating the efficient solution of nonlinear optimization problems with joint probabilistic constraints under multivariate Gaussian distributions. The numerical solution approach is based on Sequential Quadratic Programming (SQP) and is applied to a renewable energy management problem. We consider a coupled system of hydro and wind power production used in order to satisfy some local demand of energy and to sell/buy excessive or missing energy on a day-ahead and intraday market, respectively. A short term planning horizon of 2 days is considered and only wind power is assumed to be random. In the first part of the paper, we develop an appropriate optimization problem involving a probabilistic constraint reflecting demand satisfaction. Major attention will be payed to formulate this probabilistic constraint not directly in terms of random wind energy produced but rather in terms of random wind speed, in order to benefit from a large data base for identifying an appropriate distribution of the random parameter. The second part presents some details on integrating Genz’ code for Gaussian probabilities of rectangles into the environment of the SQP solver SNOPT. The procedure is validated by means of a simplified optimization problem which by its convex structure allows to estimate the gap between the numerical and theoretical optimal values, respectively. In the last part, numerical results are presented and discussed for the original (nonconvex) optimization problem. Copyright Springer-Verlag Berlin Heidelberg 2015

Suggested Citation

  • I. Bremer & R. Henrion & A. Möller, 2015. "Probabilistic constraints via SQP solver: application to a renewable energy management problem," Computational Management Science, Springer, vol. 12(3), pages 435-459, July.
  • Handle: RePEc:spr:comgts:v:12:y:2015:i:3:p:435-459
    DOI: 10.1007/s10287-015-0228-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10287-015-0228-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10287-015-0228-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrieu, L. & Henrion, R. & Römisch, W., 2010. "A model for dynamic chance constraints in hydro power reservoir management," European Journal of Operational Research, Elsevier, vol. 207(2), pages 579-589, December.
    2. Y.M. Ermoliev & T.Y. Ermolieva & G.J. MacDonald & V.I. Norkin, 2000. "Stochastic Optimization of Insurance Portfolios for Managing Exposure to Catastrophic Risks," Annals of Operations Research, Springer, vol. 99(1), pages 207-225, December.
    3. Wim Van Ackooij & René Henrion & Andris Möller & Riadh Zorgati, 2010. "On probabilistic constraints induced by rectangular sets and multivariate normal distributions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(3), pages 535-549, June.
    4. Aksoy, Hafzullah & Fuat Toprak, Z & Aytek, Ali & Erdem Ünal, N, 2004. "Stochastic generation of hourly mean wind speed data," Renewable Energy, Elsevier, vol. 29(14), pages 2111-2131.
    5. B. K. Pagnoncelli & S. Ahmed & A. Shapiro, 2009. "Sample Average Approximation Method for Chance Constrained Programming: Theory and Applications," Journal of Optimization Theory and Applications, Springer, vol. 142(2), pages 399-416, August.
    6. J. O. Royset & E. Polak, 2007. "Extensions of Stochastic Optimization Results to Problems with System Failure Probability Functions," Journal of Optimization Theory and Applications, Springer, vol. 133(1), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinxiang Wei & Zhaolin Hu & Jun Luo & Shushang Zhu, 2024. "Enhanced branch-and-bound algorithm for chance constrained programs with Gaussian mixture models," Annals of Operations Research, Springer, vol. 338(2), pages 1283-1315, July.
    2. Wim Ackooij, 2017. "A comparison of four approaches from stochastic programming for large-scale unit-commitment," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 119-147, March.
    3. Martin Branda & Štěpán Hájek, 2017. "Flow-based formulations for operational fixed interval scheduling problems with random delays," Computational Management Science, Springer, vol. 14(1), pages 161-177, January.
    4. Michel Minoux & Riadh Zorgati, 2019. "Sharp upper and lower bounds for maximum likelihood solutions to random Gaussian bilateral inequality systems," Journal of Global Optimization, Springer, vol. 75(3), pages 735-766, November.
    5. Amarjit Budhiraja & Shu Lu & Yang Yu & Quoc Tran-Dinh, 2021. "Minimization of a class of rare event probabilities and buffered probabilities of exceedance," Annals of Operations Research, Springer, vol. 302(1), pages 49-83, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Holger Berthold & Holger Heitsch & René Henrion & Jan Schwientek, 2022. "On the algorithmic solution of optimization problems subject to probabilistic/robust (probust) constraints," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(1), pages 1-37, August.
    2. Chen, Zhen & Archibald, Thomas W., 2024. "Maximizing the survival probability in a cash flow inventory problem with a joint service level constraint," International Journal of Production Economics, Elsevier, vol. 270(C).
    3. Martin Branda & Jitka Dupačová, 2012. "Approximation and contamination bounds for probabilistic programs," Annals of Operations Research, Springer, vol. 193(1), pages 3-19, March.
    4. Peng, Shen & Maggioni, Francesca & Lisser, Abdel, 2022. "Bounds for probabilistic programming with application to a blend planning problem," European Journal of Operational Research, Elsevier, vol. 297(3), pages 964-976.
    5. Rockafellar, R.T. & Royset, J.O., 2010. "On buffered failure probability in design and optimization of structures," Reliability Engineering and System Safety, Elsevier, vol. 95(5), pages 499-510.
    6. René Henrion & Andris Möller, 2012. "A Gradient Formula for Linear Chance Constraints Under Gaussian Distribution," Mathematics of Operations Research, INFORMS, vol. 37(3), pages 475-488, August.
    7. Lamas, Patricio & Goycoolea, Marcos & Pagnoncelli, Bernardo & Newman, Alexandra, 2024. "A target-time-windows technique for project scheduling under uncertainty," European Journal of Operational Research, Elsevier, vol. 314(2), pages 792-806.
    8. Salami, Akim Adekunle & Ajavon, Ayite Senah Akoda & Kodjo, Mawugno Koffi & Bedja, Koffi-Sa, 2013. "Contribution to improving the modeling of wind and evaluation of the wind potential of the site of Lome: Problems of taking into account the frequency of calm winds," Renewable Energy, Elsevier, vol. 50(C), pages 449-455.
    9. Emelogu, Adindu & Chowdhury, Sudipta & Marufuzzaman, Mohammad & Bian, Linkan & Eksioglu, Burak, 2016. "An enhanced sample average approximation method for stochastic optimization," International Journal of Production Economics, Elsevier, vol. 182(C), pages 230-252.
    10. G. Pantuso & L. M. Hvattum, 2021. "Maximizing performance with an eye on the finances: a chance-constrained model for football transfer market decisions," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 583-611, July.
    11. Hadi Karimi & Sandra D. Ekşioğlu & Michael Carbajales-Dale, 2021. "A biobjective chance constrained optimization model to evaluate the economic and environmental impacts of biopower supply chains," Annals of Operations Research, Springer, vol. 296(1), pages 95-130, January.
    12. Jiang, Jie & Peng, Shen, 2024. "Mathematical programs with distributionally robust chance constraints: Statistical robustness, discretization and reformulation," European Journal of Operational Research, Elsevier, vol. 313(2), pages 616-627.
    13. Kulwinder Parmar & Rashmi Bhardwaj, 2015. "River Water Prediction Modeling Using Neural Networks, Fuzzy and Wavelet Coupled Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(1), pages 17-33, January.
    14. Hu, Shaolong & Dong, Zhijie Sasha & Dai, Rui, 2024. "A machine learning based sample average approximation for supplier selection with option contract in humanitarian relief," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    15. T. Ermolieva & T. Filatova & Y. Ermoliev & M. Obersteiner & K. M. de Bruijn & A. Jeuken, 2017. "Flood Catastrophe Model for Designing Optimal Flood Insurance Program: Estimating Location‐Specific Premiums in the Netherlands," Risk Analysis, John Wiley & Sons, vol. 37(1), pages 82-98, January.
    16. Ming Liu & Yueyu Ding & Lihua Sun & Runchun Zhang & Yue Dong & Zihan Zhao & Yiting Wang & Chaoran Liu, 2023. "Green Airline-Fleet Assignment with Uncertain Passenger Demand and Fuel Price," Sustainability, MDPI, vol. 15(2), pages 1-22, January.
    17. Yi Zhao & Qingwan Xue & Xi Zhang, 2018. "Stochastic Empty Container Repositioning Problem with CO 2 Emission Considerations for an Intermodal Transportation System," Sustainability, MDPI, vol. 10(11), pages 1-24, November.
    18. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    19. Alexandre Street, 2010. "On the Conditional Value-at-Risk probability-dependent utility function," Theory and Decision, Springer, vol. 68(1), pages 49-68, February.
    20. Wim Ackooij, 2017. "A comparison of four approaches from stochastic programming for large-scale unit-commitment," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 119-147, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:12:y:2015:i:3:p:435-459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.