IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v75y2019i3d10.1007_s10898-019-00756-3.html
   My bibliography  Save this article

Sharp upper and lower bounds for maximum likelihood solutions to random Gaussian bilateral inequality systems

Author

Listed:
  • Michel Minoux

    (UPMC)

  • Riadh Zorgati

    (EDF Lab Paris-Saclay R&D OSIRIS)

Abstract

This paper focuses on finding a solution maximizing the joint probability of satisfaction of a given set of (independent) Gaussian bilateral inequalities. A specially structured reformulation of this nonconvex optimization problem is proposed, in which all nonconvexities are embedded in a set of 2-variable functions composing the objective. From this, it is shown how a polynomial-time solvable convex relaxation can be derived. Extensive computational experiments are also reported, and compared to previously existing results, showing that the approach typically yields feasible solutions and upper bounds within much sharper confidence intervals.

Suggested Citation

  • Michel Minoux & Riadh Zorgati, 2019. "Sharp upper and lower bounds for maximum likelihood solutions to random Gaussian bilateral inequality systems," Journal of Global Optimization, Springer, vol. 75(3), pages 735-766, November.
  • Handle: RePEc:spr:jglopt:v:75:y:2019:i:3:d:10.1007_s10898-019-00756-3
    DOI: 10.1007/s10898-019-00756-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-019-00756-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-019-00756-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bruce L. Miller & Harvey M. Wagner, 1965. "Chance Constrained Programming with Joint Constraints," Operations Research, INFORMS, vol. 13(6), pages 930-945, December.
    2. R. Jagannathan, 1974. "Chance-Constrained Programming with Joint Constraints," Operations Research, INFORMS, vol. 22(2), pages 358-372, April.
    3. Shih, Jhih-Shyang & Frey, H. Christopher, 1995. "Coal blending optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 83(3), pages 452-465, June.
    4. Andrieu, L. & Henrion, R. & Römisch, W., 2010. "A model for dynamic chance constraints in hydro power reservoir management," European Journal of Operational Research, Elsevier, vol. 207(2), pages 579-589, December.
    5. A. Charnes & W. W. Cooper, 1959. "Chance-Constrained Programming," Management Science, INFORMS, vol. 6(1), pages 73-79, October.
    6. I. Bremer & R. Henrion & A. Möller, 2015. "Probabilistic constraints via SQP solver: application to a renewable energy management problem," Computational Management Science, Springer, vol. 12(3), pages 435-459, July.
    7. Ümit Sakallı & Ömer Baykoç & Burak Birgören, 2011. "Stochastic optimization for blending problem in brass casting industry," Annals of Operations Research, Springer, vol. 186(1), pages 141-157, June.
    8. René Henrion & Cyrille Strugarek, 2011. "Convexity of Chance Constraints with Dependent Random Variables: The Use of Copulae," International Series in Operations Research & Management Science, in: Marida Bertocchi & Giorgio Consigli & Michael A. H. Dempster (ed.), Stochastic Optimization Methods in Finance and Energy, edition 1, chapter 0, pages 427-439, Springer.
    9. Michel Minoux & Riadh Zorgati, 2017. "Global probability maximization for a Gaussian bilateral inequality in polynomial time," Journal of Global Optimization, Springer, vol. 68(4), pages 879-898, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minjiao Zhang & Simge Küçükyavuz & Saumya Goel, 2014. "A Branch-and-Cut Method for Dynamic Decision Making Under Joint Chance Constraints," Management Science, INFORMS, vol. 60(5), pages 1317-1333, May.
    2. Ümit Sakallı & Ömer Baykoç & Burak Birgören, 2011. "Stochastic optimization for blending problem in brass casting industry," Annals of Operations Research, Springer, vol. 186(1), pages 141-157, June.
    3. Michel Minoux & Riadh Zorgati, 2017. "Global probability maximization for a Gaussian bilateral inequality in polynomial time," Journal of Global Optimization, Springer, vol. 68(4), pages 879-898, August.
    4. Marla, Lavanya & Rikun, Alexander & Stauffer, Gautier & Pratsini, Eleni, 2020. "Robust modeling and planning: Insights from three industrial applications," Operations Research Perspectives, Elsevier, vol. 7(C).
    5. Rashed Khanjani-Shiraz & Salman Khodayifar & Panos M. Pardalos, 2021. "Copula theory approach to stochastic geometric programming," Journal of Global Optimization, Springer, vol. 81(2), pages 435-468, October.
    6. Gaustad, Gabrielle & Li, Preston & Kirchain, Randolph, 2007. "Modeling methods for managing raw material compositional uncertainty in alloy production," Resources, Conservation & Recycling, Elsevier, vol. 52(2), pages 180-207.
    7. Scott, James & Ho, William & Dey, Prasanta K. & Talluri, Srinivas, 2015. "A decision support system for supplier selection and order allocation in stochastic, multi-stakeholder and multi-criteria environments," International Journal of Production Economics, Elsevier, vol. 166(C), pages 226-237.
    8. Rocchetta, Roberto & Crespo, Luis G., 2021. "A scenario optimization approach to reliability-based and risk-based design: Soft-constrained modulation of failure probability bounds," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    9. Bilsel, R. Ufuk & Ravindran, A., 2011. "A multiobjective chance constrained programming model for supplier selection under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1284-1300, September.
    10. Yanikoglu, I. & den Hertog, D., 2011. "Safe Approximations of Chance Constraints Using Historical Data," Other publications TiSEM ab77f6f2-248a-42f1-bde1-0, Tilburg University, School of Economics and Management.
    11. Cooper, W. W. & Hemphill, H. & Huang, Z. & Li, S. & Lelas, V. & Sullivan, D. W., 1997. "Survey of mathematical programming models in air pollution management," European Journal of Operational Research, Elsevier, vol. 96(1), pages 1-35, January.
    12. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
    13. Yanikoglu, I. & den Hertog, D., 2011. "Safe Approximations of Chance Constraints Using Historical Data," Discussion Paper 2011-137, Tilburg University, Center for Economic Research.
    14. Maji, Chandi Charan, 1975. "Intertemporal allocation of irrigation water in the Mayurakshi Project (India): an application of deterministic and chance-constrained linear programming," ISU General Staff Papers 197501010800006381, Iowa State University, Department of Economics.
    15. İhsan Yanıkoğlu & Dick den Hertog, 2013. "Safe Approximations of Ambiguous Chance Constraints Using Historical Data," INFORMS Journal on Computing, INFORMS, vol. 25(4), pages 666-681, November.
    16. Xiaodi Bai & Jie Sun & Xiaojin Zheng, 2021. "An Augmented Lagrangian Decomposition Method for Chance-Constrained Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1056-1069, July.
    17. Bruni, M.E. & Conforti, D. & Beraldi, P. & Tundis, E., 2009. "Probabilistically constrained models for efficiency and dominance in DEA," International Journal of Production Economics, Elsevier, vol. 117(1), pages 219-228, January.
    18. Wang, Tingsong & Meng, Qiang & Wang, Shuaian & Tan, Zhijia, 2013. "Risk management in liner ship fleet deployment: A joint chance constrained programming model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 60(C), pages 1-12.
    19. D. K. Mohanty & Avik Pradhan & M. P. Biswal, 2020. "Chance constrained programming with some non-normal continuous random variables," OPSEARCH, Springer;Operational Research Society of India, vol. 57(4), pages 1281-1298, December.
    20. Gülşen, Ece & Olivetti, Elsa & Freire, Fausto & Dias, Luis & Kirchain, Randolph, 2014. "Impact of feedstock diversification on the cost-effectiveness of biodiesel," Applied Energy, Elsevier, vol. 126(C), pages 281-296.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:75:y:2019:i:3:d:10.1007_s10898-019-00756-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.