IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v125y2005i2d10.1007_s10957-004-1842-z.html
   My bibliography  Save this article

On the Convergence of Sampling-Based Decomposition Algorithms for Multistage Stochastic Programs

Author

Listed:
  • K. Linowsky

    (University of St. Gallen)

  • A. B. Philpott

    (University of Auckland)

Abstract

The paper presents a convergence proof for a broad class of sampling algorithms for multistage stochastic linear programs in which the uncertain parameters occur only in the constraint right-hand sides. This class includes SDDP, AND, ReSa, and CUPPS. We show that, under some independence assumptions on the sampling procedure, the algorithms converge with probability 1.

Suggested Citation

  • K. Linowsky & A. B. Philpott, 2005. "On the Convergence of Sampling-Based Decomposition Algorithms for Multistage Stochastic Programs," Journal of Optimization Theory and Applications, Springer, vol. 125(2), pages 349-366, May.
  • Handle: RePEc:spr:joptap:v:125:y:2005:i:2:d:10.1007_s10957-004-1842-z
    DOI: 10.1007/s10957-004-1842-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-004-1842-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-004-1842-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Z. L. Chen & W. B. Powell, 1999. "Convergent Cutting-Plane and Partial-Sampling Algorithm for Multistage Stochastic Linear Programs with Recourse," Journal of Optimization Theory and Applications, Springer, vol. 102(3), pages 497-524, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Queiroz, Anderson Rodrigo, 2016. "Stochastic hydro-thermal scheduling optimization: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 382-395.
    2. Haoxiang Yang & Harsha Nagarajan, 2022. "Optimal Power Flow in Distribution Networks Under N – 1 Disruptions: A Multistage Stochastic Programming Approach," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 690-709, March.
    3. Wim Ackooij & Welington Oliveira & Yongjia Song, 2019. "On level regularization with normal solutions in decomposition methods for multistage stochastic programming problems," Computational Optimization and Applications, Springer, vol. 74(1), pages 1-42, September.
    4. Saif Benjaafar & Daniel Jiang & Xiang Li & Xiaobo Li, 2022. "Dynamic Inventory Repositioning in On-Demand Rental Networks," Management Science, INFORMS, vol. 68(11), pages 7861-7878, November.
    5. P. Girardeau & V. Leclere & A. B. Philpott, 2015. "On the Convergence of Decomposition Methods for Multistage Stochastic Convex Programs," Mathematics of Operations Research, INFORMS, vol. 40(1), pages 130-145, February.
    6. Murwan Siddig & Yongjia Song, 2022. "Adaptive partition-based SDDP algorithms for multistage stochastic linear programming with fixed recourse," Computational Optimization and Applications, Springer, vol. 81(1), pages 201-250, January.
    7. Shapiro, Alexander, 2011. "Analysis of stochastic dual dynamic programming method," European Journal of Operational Research, Elsevier, vol. 209(1), pages 63-72, February.
    8. Soares, Murilo Pereira & Street, Alexandre & Valladão, Davi Michel, 2017. "On the solution variability reduction of Stochastic Dual Dynamic Programming applied to energy planning," European Journal of Operational Research, Elsevier, vol. 258(2), pages 743-760.
    9. Martin Šmíd & Václav Kozmík, 2024. "Approximation of multistage stochastic programming problems by smoothed quantization," Review of Managerial Science, Springer, vol. 18(7), pages 2079-2114, July.
    10. W. Ackooij & X. Warin, 2020. "On conditional cuts for stochastic dual dynamic programming," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 173-199, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Queiroz, Anderson Rodrigo, 2016. "Stochastic hydro-thermal scheduling optimization: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 382-395.
    2. Lee, Jinkyu & Bae, Sanghyeon & Kim, Woo Chang & Lee, Yongjae, 2023. "Value function gradient learning for large-scale multistage stochastic programming problems," European Journal of Operational Research, Elsevier, vol. 308(1), pages 321-335.
    3. Saif Benjaafar & Daniel Jiang & Xiang Li & Xiaobo Li, 2022. "Dynamic Inventory Repositioning in On-Demand Rental Networks," Management Science, INFORMS, vol. 68(11), pages 7861-7878, November.
    4. Davi Valladão & Thuener Silva & Marcus Poggi, 2019. "Time-consistent risk-constrained dynamic portfolio optimization with transactional costs and time-dependent returns," Annals of Operations Research, Springer, vol. 282(1), pages 379-405, November.
    5. Murwan Siddig & Yongjia Song, 2022. "Adaptive partition-based SDDP algorithms for multistage stochastic linear programming with fixed recourse," Computational Optimization and Applications, Springer, vol. 81(1), pages 201-250, January.
    6. Andre Luiz Diniz & Maria Elvira P. Maceira & Cesar Luis V. Vasconcellos & Debora Dias J. Penna, 2020. "A combined SDDP/Benders decomposition approach with a risk-averse surface concept for reservoir operation in long term power generation planning," Annals of Operations Research, Springer, vol. 292(2), pages 649-681, September.
    7. Pedro Borges, 2022. "Cut-sharing across trees and efficient sequential sampling for SDDP with uncertainty in the RHS," Computational Optimization and Applications, Springer, vol. 82(3), pages 617-647, July.
    8. Martin Šmíd & Václav Kozmík, 2024. "Approximation of multistage stochastic programming problems by smoothed quantization," Review of Managerial Science, Springer, vol. 18(7), pages 2079-2114, July.
    9. Wim Ackooij & Welington Oliveira & Yongjia Song, 2019. "On level regularization with normal solutions in decomposition methods for multistage stochastic programming problems," Computational Optimization and Applications, Springer, vol. 74(1), pages 1-42, September.
    10. Guigues, Vincent & Sagastizábal, Claudia, 2012. "The value of rolling-horizon policies for risk-averse hydro-thermal planning," European Journal of Operational Research, Elsevier, vol. 217(1), pages 129-140.
    11. W. Ackooij & X. Warin, 2020. "On conditional cuts for stochastic dual dynamic programming," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 173-199, June.
    12. Michelle Bandarra & Vincent Guigues, 2021. "Single cut and multicut stochastic dual dynamic programming with cut selection for multistage stochastic linear programs: convergence proof and numerical experiments," Computational Management Science, Springer, vol. 18(2), pages 125-148, June.
    13. Steeger, Gregory & Rebennack, Steffen, 2017. "Dynamic convexification within nested Benders decomposition using Lagrangian relaxation: An application to the strategic bidding problem," European Journal of Operational Research, Elsevier, vol. 257(2), pages 669-686.
    14. Soares, Murilo Pereira & Street, Alexandre & Valladão, Davi Michel, 2017. "On the solution variability reduction of Stochastic Dual Dynamic Programming applied to energy planning," European Journal of Operational Research, Elsevier, vol. 258(2), pages 743-760.
    15. Warren Powell & Andrzej Ruszczyński & Huseyin Topaloglu, 2004. "Learning Algorithms for Separable Approximations of Discrete Stochastic Optimization Problems," Mathematics of Operations Research, INFORMS, vol. 29(4), pages 814-836, November.
    16. Juliana M. Nascimento & Warren B. Powell, 2009. "An Optimal Approximate Dynamic Programming Algorithm for the Lagged Asset Acquisition Problem," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 210-237, February.
    17. Guan, Z. & Philpott, A.B., 2011. "A multistage stochastic programming model for the New Zealand dairy industry," International Journal of Production Economics, Elsevier, vol. 134(2), pages 289-299, December.
    18. de Queiroz, Anderson Rodrigo & Marangon Lima, Luana M. & Marangon Lima, José W. & da Silva, Benedito C. & Scianni, Luciana A., 2016. "Climate change impacts in the energy supply of the Brazilian hydro-dominant power system," Renewable Energy, Elsevier, vol. 99(C), pages 379-389.
    19. Arnab Bhattacharya & Jeffrey P. Kharoufeh & Bo Zeng, 2023. "A Nonconvex Regularization Scheme for the Stochastic Dual Dynamic Programming Algorithm," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1161-1178, September.
    20. Vitor L. de Matos & David P. Morton & Erlon C. Finardi, 2017. "Assessing policy quality in a multistage stochastic program for long-term hydrothermal scheduling," Annals of Operations Research, Springer, vol. 253(2), pages 713-731, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:125:y:2005:i:2:d:10.1007_s10957-004-1842-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.