IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v82y2022i3d10.1007_s10589-022-00376-w.html
   My bibliography  Save this article

Cut-sharing across trees and efficient sequential sampling for SDDP with uncertainty in the RHS

Author

Listed:
  • Pedro Borges

    (Instituto de Matemática Pura e Aplicada)

Abstract

Multistage stochastic optimization problems (MSOP) are a commonly used paradigm to model many decision processes in energy and finance. Usually, a set of scenarios (the so-called tree) describing the stochasticity of the problem are obtained and the Stochastic Dual Dynamic Programming (SDDP) algorithm is often used to compute policies. Quite often, the uncertainty affects only the right-hand side (RHS) of the optimization problems in consideration. After solving a MSOP, one naturally wants to know if the solution obtained depends on the scenarios and by how much. In this paper we show that when a MSOP with stage-wise independent realizations has only RHS uncertainties, solving one tree using SDDP provides a valid lower bound for all trees with the same number of scenarios per stage without any additional computational effort. The only change to the traditional SDDP is the way cuts are calculated. Once the first tree is solved approximately, a computational assessment of the statistical significance of the current number of scenarios per stage is performed, solving for each new sampled tree, an easy LP to get a valid lower bound for the new tree. The objective of the paper is to estimate by how much the lower bound of the first tree depends on chance. The result of the computational assessment are fast estimates of the mean, variance and max variation of lower bounds across many trees. If the variance of the calculated lower bounds is small, we conclude that the cutting planes model has a small sensitivity to the trees sampled. Otherwise, we increase the number of scenarios per stage and repeat. We do not make assumptions on the distributions of the random variables. The results are not asymptotic. Our method has applications to the determination of the correct number of scenarios per stage. Extensions for uncertainties in the objective only are possible via the dual SDDP. We test our method numerically and verify the correctness of the cut-sharing technique.

Suggested Citation

  • Pedro Borges, 2022. "Cut-sharing across trees and efficient sequential sampling for SDDP with uncertainty in the RHS," Computational Optimization and Applications, Springer, vol. 82(3), pages 617-647, July.
  • Handle: RePEc:spr:coopap:v:82:y:2022:i:3:d:10.1007_s10589-022-00376-w
    DOI: 10.1007/s10589-022-00376-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-022-00376-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-022-00376-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jeff Linderoth & Alexander Shapiro & Stephen Wright, 2006. "The empirical behavior of sampling methods for stochastic programming," Annals of Operations Research, Springer, vol. 142(1), pages 215-241, February.
    2. Z. L. Chen & W. B. Powell, 1999. "Convergent Cutting-Plane and Partial-Sampling Algorithm for Multistage Stochastic Linear Programs with Recourse," Journal of Optimization Theory and Applications, Springer, vol. 102(3), pages 497-524, September.
    3. Shapiro, Alexander, 2011. "Analysis of stochastic dual dynamic programming method," European Journal of Operational Research, Elsevier, vol. 209(1), pages 63-72, February.
    4. Wim Ackooij & Jérôme Malick, 2016. "Decomposition algorithm for large-scale two-stage unit-commitment," Annals of Operations Research, Springer, vol. 238(1), pages 587-613, March.
    5. R.T. Rockafellar, 1999. "Duality and optimality in multistagestochastic programming," Annals of Operations Research, Springer, vol. 85(0), pages 1-19, January.
    6. Julia Higle & Suvrajeet Sen, 2006. "Multistage stochastic convex programs: Duality and its implications," Annals of Operations Research, Springer, vol. 142(1), pages 129-146, February.
    7. Wim Ackooij & Jérôme Malick, 2016. "Decomposition algorithm for large-scale two-stage unit-commitment," Annals of Operations Research, Springer, vol. 238(1), pages 587-613, March.
    8. Andy Philpott & Vitor de Matos & Erlon Finardi, 2013. "On Solving Multistage Stochastic Programs with Coherent Risk Measures," Operations Research, INFORMS, vol. 61(4), pages 957-970, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. W. Ackooij & X. Warin, 2020. "On conditional cuts for stochastic dual dynamic programming," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 173-199, June.
    2. de Queiroz, Anderson Rodrigo, 2016. "Stochastic hydro-thermal scheduling optimization: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 382-395.
    3. Wim van Ackooij & Welington de Oliveira & Yongjia Song, 2018. "Adaptive Partition-Based Level Decomposition Methods for Solving Two-Stage Stochastic Programs with Fixed Recourse," INFORMS Journal on Computing, INFORMS, vol. 30(1), pages 57-70, February.
    4. Guigues, Vincent & Shapiro, Alexander & Cheng, Yi, 2023. "Duality and sensitivity analysis of multistage linear stochastic programs," European Journal of Operational Research, Elsevier, vol. 308(2), pages 752-767.
    5. Arnab Bhattacharya & Jeffrey P. Kharoufeh & Bo Zeng, 2023. "A Nonconvex Regularization Scheme for the Stochastic Dual Dynamic Programming Algorithm," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1161-1178, September.
    6. Lee, Jinkyu & Bae, Sanghyeon & Kim, Woo Chang & Lee, Yongjae, 2023. "Value function gradient learning for large-scale multistage stochastic programming problems," European Journal of Operational Research, Elsevier, vol. 308(1), pages 321-335.
    7. Zéphyr, Luckny & Lang, Pascal & Lamond, Bernard F. & Côté, Pascal, 2017. "Approximate stochastic dynamic programming for hydroelectric production planning," European Journal of Operational Research, Elsevier, vol. 262(2), pages 586-601.
    8. Saif Benjaafar & Daniel Jiang & Xiang Li & Xiaobo Li, 2022. "Dynamic Inventory Repositioning in On-Demand Rental Networks," Management Science, INFORMS, vol. 68(11), pages 7861-7878, November.
    9. Alexander Franz & Julia Rieck & Jürgen Zimmermann, 2019. "Fix-and-optimize procedures for solving the long-term unit commitment problem with pumped storages," Annals of Operations Research, Springer, vol. 274(1), pages 241-265, March.
    10. Davi Valladão & Thuener Silva & Marcus Poggi, 2019. "Time-consistent risk-constrained dynamic portfolio optimization with transactional costs and time-dependent returns," Annals of Operations Research, Springer, vol. 282(1), pages 379-405, November.
    11. Rudloff, Birgit & Street, Alexandre & Valladão, Davi M., 2014. "Time consistency and risk averse dynamic decision models: Definition, interpretation and practical consequences," European Journal of Operational Research, Elsevier, vol. 234(3), pages 743-750.
    12. A. B. Philpott & V. L. Matos & L. Kapelevich, 2018. "Distributionally robust SDDP," Computational Management Science, Springer, vol. 15(3), pages 431-454, October.
    13. Clara Lage & Claudia Sagastizábal & Mikhail Solodov, 2020. "Multiplier Stabilization Applied to Two-Stage Stochastic Programs," Post-Print halshs-02900862, HAL.
    14. Murwan Siddig & Yongjia Song, 2022. "Adaptive partition-based SDDP algorithms for multistage stochastic linear programming with fixed recourse," Computational Optimization and Applications, Springer, vol. 81(1), pages 201-250, January.
    15. Andre Luiz Diniz & Maria Elvira P. Maceira & Cesar Luis V. Vasconcellos & Debora Dias J. Penna, 2020. "A combined SDDP/Benders decomposition approach with a risk-averse surface concept for reservoir operation in long term power generation planning," Annals of Operations Research, Springer, vol. 292(2), pages 649-681, September.
    16. Schur, Rouven & Gönsch, Jochen & Hassler, Michael, 2019. "Time-consistent, risk-averse dynamic pricing," European Journal of Operational Research, Elsevier, vol. 277(2), pages 587-603.
    17. Martin Šmíd & Václav Kozmík, 2024. "Approximation of multistage stochastic programming problems by smoothed quantization," Review of Managerial Science, Springer, vol. 18(7), pages 2079-2114, July.
    18. Park, Jangho & Bayraksan, Güzin, 2023. "A multistage distributionally robust optimization approach to water allocation under climate uncertainty," European Journal of Operational Research, Elsevier, vol. 306(2), pages 849-871.
    19. Wim Ackooij & Welington Oliveira & Yongjia Song, 2019. "On level regularization with normal solutions in decomposition methods for multistage stochastic programming problems," Computational Optimization and Applications, Springer, vol. 74(1), pages 1-42, September.
    20. Guigues, Vincent & Sagastizábal, Claudia, 2012. "The value of rolling-horizon policies for risk-averse hydro-thermal planning," European Journal of Operational Research, Elsevier, vol. 217(1), pages 129-140.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:82:y:2022:i:3:d:10.1007_s10589-022-00376-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.