IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v11y2018i4p67-d177971.html
   My bibliography  Save this article

Between ℙ and ℚ: The ℙ ℚ Measure for Pricing in Asset Liability Management

Author

Listed:
  • Marcel T. P. Van Dijk

    (Ortec Finance, 3011 XB Rotterdam, The Netherlands
    DIAM—Delft Institute of Applied Mathematics, Delft University of Technology, 2628 CD Delft, The Netherlands)

  • Cornelis S. L. De Graaf

    (Ortec Finance, 3011 XB Rotterdam, The Netherlands)

  • Cornelis W. Oosterlee

    (DIAM—Delft Institute of Applied Mathematics, Delft University of Technology, 2628 CD Delft, The Netherlands
    CWI—The Center for Mathematics and Computer Science, 1098 XG Amsterdam, The Netherlands)

Abstract

Insurance companies issue guarantees that need to be valued according to the market expectations. By calibrating option pricing models to the available implied volatility surfaces, one deals with the so-called risk-neutral measure Q , which can be used to generate market consistent values for these guarantees. For asset liability management, insurers also need future values of these guarantees. Next to that, new regulations require insurance companies to value their positions on a one-year horizon. As the option prices at t = 1 are unknown, it is common practice to assume that the parameters of these option pricing models are constant, i.e., the calibrated parameters from time t = 0 are also used to value the guarantees at t = 1 . However, it is well-known that the parameters are not constant and may depend on the state of the market which evolves under the real-world measure P . In this paper, we propose improved regression models that, given a set of market variables such as the VIX index and risk-free interest rates, estimate the calibrated parameters. When the market variables are included in a real-world simulation, one is able to assess the calibrated parameters (and consequently the implied volatility surface) in line with the simulated state of the market. By performing a regression, we are able to predict out-of-sample implied volatility surfaces accurately. Moreover, the impact on the Solvency Capital Requirement has been evaluated for different points in time. The impact depends on the initial state of the market and may vary between −46% and +52%.

Suggested Citation

  • Marcel T. P. Van Dijk & Cornelis S. L. De Graaf & Cornelis W. Oosterlee, 2018. "Between ℙ and ℚ: The ℙ ℚ Measure for Pricing in Asset Liability Management," JRFM, MDPI, vol. 11(4), pages 1-23, October.
  • Handle: RePEc:gam:jjrfmx:v:11:y:2018:i:4:p:67-:d:177971
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/11/4/67/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/11/4/67/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    2. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    3. Laurent Devineau & Stéphane Loisel, 2009. "Risk aggregation in Solvency II: How to converge the approaches of the internal models and those of the standard formula?," Post-Print hal-00403662, HAL.
    4. S. N. Singor & A. Boer & J. S. C. Alberts & C. W. Oosterlee, 2017. "On the modelling of nested risk-neutral stochastic processes with applications in insurance," Applied Mathematical Finance, Taylor & Francis Journals, vol. 24(4), pages 302-336, July.
    5. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. "Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    6. Chris Kenyon & Andrew Green & Mourad Berrahoui, 2015. "Which measure for PFE? The Risk Appetite Measure, A," Papers 1512.06247, arXiv.org.
    7. Rama Cont & Jose da Fonseca & Valdo Durrleman, 2002. "Stochastic Models of Implied Volatility Surfaces," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 31(2), pages 361-377, July.
    8. Scott Mixon, 2002. "Factors explaining movements in the implied volatility surface," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 22(10), pages 915-937, October.
    9. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    10. Harvey J. Stein, 2016. "Fixing Risk Neutral Risk Measures," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 1-28, May.
    11. Carol Alexander & Andreas Kaeck & Leonardo M. Nogueira, 2009. "Model risk adjusted hedge ratios," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 29(11), pages 1021-1049, November.
    12. repec:cdl:anderf:qt43n1k4jb is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lars Stentoft, 2020. "Computational Finance," JRFM, MDPI, vol. 13(7), pages 1-4, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bollerslev, Tim & Gibson, Michael & Zhou, Hao, 2011. "Dynamic estimation of volatility risk premia and investor risk aversion from option-implied and realized volatilities," Journal of Econometrics, Elsevier, vol. 160(1), pages 235-245, January.
    2. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    3. Mehrdoust, Farshid & Noorani, Idin & Hamdi, Abdelouahed, 2023. "Two-factor Heston model equipped with regime-switching: American option pricing and model calibration by Levenberg–Marquardt optimization algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 660-678.
    4. Bandi, F.M. & Renò, R., 2016. "Price and volatility co-jumps," Journal of Financial Economics, Elsevier, vol. 119(1), pages 107-146.
    5. Max F. Schöne & Stefan Spinler, 2017. "A four-factor stochastic volatility model of commodity prices," Review of Derivatives Research, Springer, vol. 20(2), pages 135-165, July.
    6. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    7. Meddahi, N., 2001. "An Eigenfunction Approach for Volatility Modeling," Cahiers de recherche 2001-29, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    8. Antonio Cosma & Stefano Galluccio & Paola Pederzoli & O. Scaillet, 2012. "Valuing American Options Using Fast Recursive Projections," Swiss Finance Institute Research Paper Series 12-26, Swiss Finance Institute.
    9. Weiping Li & Su Chen, 2018. "The Early Exercise Premium In American Options By Using Nonparametric Regressions," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(07), pages 1-29, November.
    10. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    11. Ascione, Giacomo & Mehrdoust, Farshid & Orlando, Giuseppe & Samimi, Oldouz, 2023. "Foreign Exchange Options on Heston-CIR Model Under Lévy Process Framework," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    12. Gang Li & Chu Zhang, 2010. "On the Number of State Variables in Options Pricing," Management Science, INFORMS, vol. 56(11), pages 2058-2075, November.
    13. Stentoft, Lars, 2011. "American option pricing with discrete and continuous time models: An empirical comparison," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 880-902.
    14. Beliaeva, Natalia & Nawalkha, Sanjay, 2012. "Pricing American interest rate options under the jump-extended constant-elasticity-of-variance short rate models," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 151-163.
    15. Dilip B. Madan, 2015. "Estimating Parametric Models of Probability Distributions," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 823-831, September.
    16. Arturo Leccadito & Pietro Toscano & Radu S. Tunaru, 2012. "Hermite Binomial Trees: A Novel Technique For Derivatives Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(08), pages 1-36.
    17. Gurdip Bakshi & Charles Cao & Zhaodong (Ken) Zhong, 2021. "Assessing models of individual equity option prices," Review of Quantitative Finance and Accounting, Springer, vol. 57(1), pages 1-28, July.
    18. Bin Xie & Weiping Li & Nan Liang, 2021. "Pricing S&P 500 Index Options with L\'evy Jumps," Papers 2111.10033, arXiv.org, revised Nov 2021.
    19. Stephane Crepey, 2004. "Delta-hedging vega risk?," Quantitative Finance, Taylor & Francis Journals, vol. 4(5), pages 559-579.
    20. Alberto Bueno-Guerrero & Steven P. Clark, 2023. "Option Pricing under a Generalized Black–Scholes Model with Stochastic Interest Rates, Stochastic Strings, and Lévy Jumps," Mathematics, MDPI, vol. 12(1), pages 1-39, December.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:11:y:2018:i:4:p:67-:d:177971. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.