IDEAS home Printed from https://ideas.repec.org/a/bpj/mcmeap/v25y2019i3p239-252n5.html
   My bibliography  Save this article

A control variate method for weak approximation of SDEs via discretization of numerical error of asymptotic expansion

Author

Listed:
  • Okano Yusuke

    (Hitotsubashi University, TokyoJapan(current affiliation: SMBC Nikko Securities Inc., Tokyo, Japan))

  • Yamada Toshihiro

    (Hitotsubashi University, Tokyo, Japan)

Abstract

The paper shows a new weak approximation method for stochastic differential equations as a generalization and an extension of Heath–Platen’s scheme for multidimensional diffusion processes. We reformulate the Heath–Platen estimator from the viewpoint of asymptotic expansion. The proposed scheme is implemented by a Monte Carlo method and its variance is much reduced by the asymptotic expansion which works as a kind of control variate. Numerical examples for the local stochastic volatility model are shown to confirm the efficiency of the method.

Suggested Citation

  • Okano Yusuke & Yamada Toshihiro, 2019. "A control variate method for weak approximation of SDEs via discretization of numerical error of asymptotic expansion," Monte Carlo Methods and Applications, De Gruyter, vol. 25(3), pages 239-252, September.
  • Handle: RePEc:bpj:mcmeap:v:25:y:2019:i:3:p:239-252:n:5
    DOI: 10.1515/mcma-2019-2044
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/mcma-2019-2044
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/mcma-2019-2044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eckhard Platen, 2006. "A Benchmark Approach To Finance," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 131-151, January.
    2. Guyon, Julien, 2006. "Euler scheme and tempered distributions," Stochastic Processes and their Applications, Elsevier, vol. 116(6), pages 877-904, June.
    3. Naoto Kunitomo & Akihiko Takahashi, 2001. "The Asymptotic Expansion Approach to the Valuation of Interest Rate Contingent Claims," Mathematical Finance, Wiley Blackwell, vol. 11(1), pages 117-151, January.
    4. David Heath & Eckhard Platen, 2002. "A variance reduction technique based on integral representations," Quantitative Finance, Taylor & Francis Journals, vol. 2(5), pages 362-369.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicola Bruti-Liberati & Christina Nikitopoulos-Sklibosios & Eckhard Platen & Erik Schlögl, 2009. "Alternative Defaultable Term Structure Models," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 16(1), pages 1-31, March.
    2. Nicola Bruti-Liberati & Eckhard Platen, 2007. "Approximation of jump diffusions in finance and economics," Computational Economics, Springer;Society for Computational Economics, vol. 29(3), pages 283-312, May.
    3. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1, July-Dece.
    4. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, December.
    5. David Heath & Eckhard Platen, 2014. "A Monte Carlo Method using PDE Expansions for a Diversifed Equity Index Model," Research Paper Series 350, Quantitative Finance Research Centre, University of Technology, Sydney.
    6. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2007, January-A.
    7. Kohta Takehara & Masashi Toda & Akihiko Takahashi, 2010. "Application Of A High-Order Asymptotic Expansion Scheme To Long-Term Currency Options," CARF F-Series CARF-F-225, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    8. Akihiko Takahashi & Toshihiro Yamada, 2013. "On Error Estimates for Asymptotic Expansions with Malliavin Weights -Application to Stochastic Volatility Model-," CARF F-Series CARF-F-324, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Mar 2014.
    9. Kenichiro Shiraya & Akihiko Takahashi, 2014. "Pricing Basket Options under Local Stochastic Volatility with Jumps," CIRJE F-Series CIRJE-F-913, CIRJE, Faculty of Economics, University of Tokyo.
    10. Carole Bernard & Franck Moraux & Ludger R�schendorf & Steven Vanduffel, 2015. "Optimal payoffs under state-dependent preferences," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1157-1173, July.
    11. Akihiko Takahashi & Nakahiro Yoshida, 2003. "An Asymptotic Expansion Scheme for the Optimal Investment Problems," CIRJE F-Series CIRJE-F-248, CIRJE, Faculty of Economics, University of Tokyo.
    12. Kevin Fergusson & Eckhard Platen, 2006. "On the Distributional Characterization of Daily Log-Returns of a World Stock Index," Applied Mathematical Finance, Taylor & Francis Journals, vol. 13(1), pages 19-38.
    13. Kenichiro Shiraya & Akihiko Takahashi, 2015. "An approximation formula for basket option prices under local stochastic volatility with jumps: an application to commodity markets," CARF F-Series CARF-F-361, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Aug 2015.
    14. Vladimir Cherny & Jan Obłój, 2013. "Portfolio optimisation under non-linear drawdown constraints in a semimartingale financial model," Finance and Stochastics, Springer, vol. 17(4), pages 771-800, October.
    15. Taguchi, Dai & Tanaka, Akihiro, 2020. "Probability density function of SDEs with unbounded and path-dependent drift coefficient," Stochastic Processes and their Applications, Elsevier, vol. 130(9), pages 5243-5289.
    16. Akihiko Takahashi & Kohta Takehara, 2007. "An Asymptotic Expansion Approach to Currency Options with a Market Model of Interest Rates under Stochastic Volatility Processes of Spot Exchange Rates (Revised in August 2007 and January 2009; subseq," CARF F-Series CARF-F-092, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    17. repec:uts:finphd:40 is not listed on IDEAS
    18. Constantinos Kardaras, 2009. "Num\'{e}raire-invariant preferences in financial modeling," Papers 0903.3736, arXiv.org, revised Nov 2010.
    19. Eckhard Platen & Renata Rendek, 2009. "Simulation of Diversified Portfolios in a Continuous Financial Market," Research Paper Series 264, Quantitative Finance Research Centre, University of Technology, Sydney.
    20. Yoshida, Nakahiro, 2023. "Asymptotic expansion and estimates of Wiener functionals," Stochastic Processes and their Applications, Elsevier, vol. 157(C), pages 176-248.
    21. Mikhail Zhitlukhin, 2018. "Survival investment strategies in a continuous-time market model with competition," Papers 1811.12491, arXiv.org, revised Sep 2019.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:mcmeap:v:25:y:2019:i:3:p:239-252:n:5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.