IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Finitely additive probabilities and the Fundamental Theorem of Asset Pricing

  • Constantinos Kardaras
Registered author(s):

    This work aims at a deeper understanding of the mathematical implications of the economically-sound condition of absence of arbitrages of the first kind in a financial market. In the spirit of the Fundamental Theorem of Asset Pricing (FTAP), it is shown here that absence of arbitrages of the first kind in the market is equivalent to the existence of a finitely additive probability, weakly equivalent to the original and only locally countably additive, under which the discounted wealth processes become "local martingales". The aforementioned result is then used to obtain an independent proof of the FTAP of Delbaen and Schachermayer. Finally, an elementary and short treatment of the previous discussion is presented for the case of continuous-path semimartingale asset-price processes.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    File Function: Latest version
    Download Restriction: no

    Paper provided by in its series Papers with number 0911.5503.

    in new window

    Date of creation: Nov 2009
    Date of revision:
    Handle: RePEc:arx:papers:0911.5503
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Eckhard Platen, 2004. "A Benchmark Approach to Finance," Research Paper Series 138, Quantitative Finance Research Centre, University of Technology, Sydney.
    2. Kreps, David M., 1981. "Arbitrage and equilibrium in economies with infinitely many commodities," Journal of Mathematical Economics, Elsevier, vol. 8(1), pages 15-35, March.
    3. Constantinos Kardaras & Eckhard Platen, 2008. "On the semimartingale property of discounted asset-price processes," Papers 0803.1890,, revised Nov 2009.
    4. (**), Hui Wang & Jaksa Cvitanic & (*), Walter Schachermayer, 2001. "Utility maximization in incomplete markets with random endowment," Finance and Stochastics, Springer, vol. 5(2), pages 259-272.
    5. Loewenstein, Mark & Willard, Gregory A., 2000. "Rational Equilibrium Asset-Pricing Bubbles in Continuous Trading Models," Journal of Economic Theory, Elsevier, vol. 91(1), pages 17-58, March.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:0911.5503. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.