IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1310.1142.html
   My bibliography  Save this paper

Non-Arbitrage up to Random Horizon for Semimartingale Models

Author

Listed:
  • Anna Aksamit
  • Tahir Choulli
  • Jun Deng
  • Monique Jeanblanc

Abstract

This paper addresses the question of how an arbitrage-free semimartingale model is affected when stopped at a random horizon. We focus on No-Unbounded-Profit-with-Bounded-Risk (called NUPBR hereafter) concept, which is also known in the literature as the first kind of non-arbitrage. For this non-arbitrage notion, we obtain two principal results. The first result lies in describing the pairs of market model and random time for which the resulting stopped model fulfills NUPBR condition. The second main result characterises the random time models that preserve the NUPBR property after stopping for any market model. These results are elaborated in a very general market model, and we also pay attention to some particular and practical models. The analysis that drives these results is based on new stochastic developments in semimartingale theory with progressive enlargement. Furthermore, we construct explicit martingale densities (deflators) for some classes of local martingales when stopped at random time.

Suggested Citation

  • Anna Aksamit & Tahir Choulli & Jun Deng & Monique Jeanblanc, 2013. "Non-Arbitrage up to Random Horizon for Semimartingale Models," Papers 1310.1142, arXiv.org, revised Feb 2014.
  • Handle: RePEc:arx:papers:1310.1142
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1310.1142
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters,in: Theory Of Valuation, chapter 8, pages 229-288 World Scientific Publishing Co. Pte. Ltd..
    2. Tahir Choulli & Christophe Stricker & Jia Li, 2007. "Minimal Hellinger martingale measures of order q," Finance and Stochastics, Springer, vol. 11(3), pages 399-427, July.
    3. Ashkan Nikeghbali & Eckhard Platen, 2013. "A reading guide for last passage times with financial applications in view," Finance and Stochastics, Springer, vol. 17(3), pages 615-640, July.
    4. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    5. Freddy Delbaen & Walter Schachermayer, 1998. "A Simple Counterexample to Several Problems in the Theory of Asset Pricing," Mathematical Finance, Wiley Blackwell, vol. 8(1), pages 1-11.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Acciaio, Beatrice & Fontana, Claudio & Kardaras, Constantinos, 2016. "Arbitrage of the first kind and filtration enlargements in semimartingale financial models," Stochastic Processes and their Applications, Elsevier, vol. 126(6), pages 1761-1784.
    2. Acciaio, Beatrice & Fontana, Claudio & Kardaras, Constantinos, 2016. "Arbitrage of the first kind and filtration enlargements in semimartingale financial models," LSE Research Online Documents on Economics 65150, London School of Economics and Political Science, LSE Library.
    3. Tahir Choulli & Catherine Daveloose & Mich`ele Vanmaele, 2015. "A martingale representation and risk's decomposition with applications: Mortality/longevity risk and securitization," Papers 1510.05858, arXiv.org, revised Jun 2017.
    4. Anna Aksamit & Tahir Choulli & Jun Deng & Monique Jeanblanc, 2015. "Non-Arbitrage Under Additional Information for Thin Semimartingale Models," Papers 1505.00997, arXiv.org.
    5. Kreher, Dörte, 2017. "Change of measure up to a random time: Details," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1565-1598.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1310.1142. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.