IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v25y2005i3p255-267.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

The Size and Power of the Bias-Corrected Bootstrap Test for Regression Models with Autocorrelated Errors

Author

Listed:
  • Jae Kim
  • Mahbuba Yeasmin

Abstract

This paper is concerned with statistical inference for the coefficient of the linear regression model when the error term follows an autoregressive (AR) model. Past studies have reported severe size distortions, when the data are trending and autocorrelation of the error term is high. In this paper, we consider a test based on the bias-corrected bootstrap, where bias-corrected parameter estimators for the AR and regression coefficients are used. For bias-correction, the jackknife and bootstrap methods are employed. Monte Carlo simulations are conducted to compare size and power properties of the bias-corrected bootstrap test. It is found that the bias-corrected bootstrap test shows substantially improved size properties and exhibits excellent power for most of cases considered. It also appears that bootstrap bias-correction leads to better size and higher power values than jackknife bias-correction. These results are found to be robust to the choice of parameter estimation methods. Copyright Springer Science + Business Media, Inc. 2005

Suggested Citation

  • Jae Kim & Mahbuba Yeasmin, 2005. "The Size and Power of the Bias-Corrected Bootstrap Test for Regression Models with Autocorrelated Errors," Computational Economics, Springer;Society for Computational Economics, vol. 25(3), pages 255-267, June.
  • Handle: RePEc:kap:compec:v:25:y:2005:i:3:p:255-267
    DOI: 10.1007/s10614-005-2208-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10614-005-2208-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10614-005-2208-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Jae H, 2001. "Bootstrap-after-Bootstrap Prediction Intervals for Autoregressive Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(1), pages 117-128, January.
    2. Veall, Michael R., 1986. "Bootstrapping regression estimators under first-order serial correlation," Economics Letters, Elsevier, vol. 21(1), pages 41-44.
    3. King, M.L. & Giles, D.E.A., 1984. "Autocorrelation pre-testing in the linear model: Estimation, testing and prediction," Journal of Econometrics, Elsevier, vol. 25(1-2), pages 35-48.
    4. Rahman, Shahidur & King, Maxwell L., 1997. "Marginal-likelihood score-based tests of regression disturbances in the presence of nuisance parameters," Journal of Econometrics, Elsevier, vol. 82(1), pages 81-106.
    5. Unknown, 1986. "Letters," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 1(4), pages 1-9.
    6. Merton, Robert C, 1973. "An Intertemporal Capital Asset Pricing Model," Econometrica, Econometric Society, vol. 41(5), pages 867-887, September.
    7. Rayner, Robert K., 1991. "Resampling methods for tests in regression models with autocorrelated errors," Economics Letters, Elsevier, vol. 36(3), pages 281-284, July.
    8. Rilstone, Paul, 1993. "Some improvements for bootstrapping regression estimators under first-order serial correlation," Economics Letters, Elsevier, vol. 42(4), pages 335-339.
    9. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119, Decembrie.
    10. Kwok, Ben & Veall, Michael R., 1988. "The jackknife and regression with AR(1) errors," Economics Letters, Elsevier, vol. 26(3), pages 247-252.
    11. Lutz Kilian, 1998. "Small-Sample Confidence Intervals For Impulse Response Functions," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 218-230, May.
    12. Oxley, Leslie T & Roberts, Colin J, 1982. "Pitfalls in the Application of the Cochrane-Orcutt Technique," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 44(3), pages 227-240, August.
    13. Beach, Charles M & MacKinnon, James G, 1978. "A Maximum Likelihood Procedure for Regression with Autocorrelated Errors," Econometrica, Econometric Society, vol. 46(1), pages 51-58, January.
    14. Maddala, G S & Rao, A S, 1973. "Tests for Serial Correlation in Regression Models with Lagged Dependent Variables and Serially Correlated Errors," Econometrica, Econometric Society, vol. 41(4), pages 761-774, July.
    15. Andrews, Donald W K, 1993. "Exactly Median-Unbiased Estimation of First Order Autoregressive/Unit Root Models," Econometrica, Econometric Society, vol. 61(1), pages 139-165, January.
    16. Park, Rolla Edward & Mitchell, Bridger M., 1980. "Estimating the autocorrelated error model with trended data," Journal of Econometrics, Elsevier, vol. 13(2), pages 185-201, June.
    17. Oxley, Leslie T. & Roberts, Colin J., 1986. "Multiple minima and the Cochrane-Orcutt technique : Some initial Monte Carlo results," Economics Letters, Elsevier, vol. 20(3), pages 247-250.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chiara Consiglio & Nicoletta Massa & Valentina Sommovigo & Luigi Fusco, 2023. "Techno-Stress Creators, Burnout and Psychological Health among Remote Workers during the Pandemic: The Moderating Role of E-Work Self-Efficacy," IJERPH, MDPI, vol. 20(22), pages 1-23, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jae Kim, 2005. "Bias-Corrected Bootstrap Inference for Regression Models with Autocorrelated Errors," Economics Bulletin, AccessEcon, vol. 3(44), pages 1-8.
    2. repec:ebl:ecbull:v:3:y:2005:i:44:p:1-8 is not listed on IDEAS
    3. Rayner, Robert K., 1991. "Resampling methods for tests in regression models with autocorrelated errors," Economics Letters, Elsevier, vol. 36(3), pages 281-284, July.
    4. Li, Hongyi & Maddala, G. S., 1997. "Bootstrapping cointegrating regressions," Journal of Econometrics, Elsevier, vol. 80(2), pages 297-318, October.
    5. Tom Engsted & Thomas Q. Pedersen, 2014. "Bias-Correction in Vector Autoregressive Models: A Simulation Study," Econometrics, MDPI, vol. 2(1), pages 1-27, March.
    6. Kim, Jae H., 2003. "Forecasting autoregressive time series with bias-corrected parameter estimators," International Journal of Forecasting, Elsevier, vol. 19(3), pages 493-502.
    7. Clements, Michael P. & Kim, Jae H., 2007. "Bootstrap prediction intervals for autoregressive time series," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3580-3594, April.
    8. Claude Lopez & Christian J. Murray & David H. Papell, 2013. "Median-unbiased estimation in DF-GLS regressions and the PPP puzzle," Applied Economics, Taylor & Francis Journals, vol. 45(4), pages 455-464, February.
    9. Brüggemann, Ralf & Jentsch, Carsten & Trenkler, Carsten, 2016. "Inference in VARs with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 191(1), pages 69-85.
    10. Liu, Shen & Maharaj, Elizabeth Ann & Inder, Brett, 2014. "Polarization of forecast densities: A new approach to time series classification," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 345-361.
    11. Niklas Elert, 2014. "What determines entry? Evidence from Sweden," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 53(1), pages 55-92, August.
    12. Godfrey, L. G. & Veall, M. R., 1998. "Bootstrap-based critical values for tests of common factor restrictions," Economics Letters, Elsevier, vol. 59(1), pages 1-5, April.
    13. Anna Staszewska-Bystrova & Peter Winker, 2016. "Improved bootstrap prediction intervals for SETAR models," Statistical Papers, Springer, vol. 57(1), pages 89-98, March.
    14. Robert Mulligan, 1996. "Export-import endogeneity in the context of the Thirlwall- Hussain model: an application of the Durbin-Wu-Hausman test incorporating a Monte Carlo experiment," Applied Economics Letters, Taylor & Francis Journals, vol. 3(4), pages 275-279.
    15. Marcet, Albert & Jarociński, Marek, 2010. "Autoregressions in small samples, priors about observables and initial conditions," Working Paper Series 1263, European Central Bank.
    16. Jonathan H. Wright, 2000. "Exact confidence intervals for impulse responses in a Gaussian vector autoregression," International Finance Discussion Papers 682, Board of Governors of the Federal Reserve System (U.S.).
    17. Mark E. Wohar & David E. Rapach, 2005. "Return Predictability and the Implied Intertemporal Hedging Demands for Stocks and Bonds: International Evidence," Computing in Economics and Finance 2005 329, Society for Computational Economics.
    18. Dufour, Jean-Marie & Khalaf, Lynda, 2002. "Simulation based finite and large sample tests in multivariate regressions," Journal of Econometrics, Elsevier, vol. 111(2), pages 303-322, December.
    19. Josep Lluís Carrion-i-Silvestre & María Dolores Gadea & Antonio Montañés, 2017. "“Unbiased estimation of autoregressive models forbounded stochastic processes," AQR Working Papers 201710, University of Barcelona, Regional Quantitative Analysis Group, revised Dec 2017.
    20. Lütkepohl,Helmut & Krätzig,Markus (ed.), 2004. "Applied Time Series Econometrics," Cambridge Books, Cambridge University Press, number 9780521547871, November.
    21. Matthew Higgins & Jeffrey G. Williamson, 1996. "Asian Demography and Foreign Capital Dependence," NBER Working Papers 5560, National Bureau of Economic Research, Inc.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:25:y:2005:i:3:p:255-267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.