IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Covariance estimation for multivariate conditionally Gaussian dynamic linear models

Listed author(s):
  • K. Triantafyllopoulos

    (Department of Probability and Statistics, University of Sheffield, Sheffield, UK)

In multivariate time series, estimation of the covariance matrix of observation innovations plays an important role in forecasting as it enables computation of standardized forecast error vectors as well as the computation of confidence bounds of forecasts. We develop an online, non-iterative Bayesian algorithm for estimation and forecasting. It is empirically found that, for a range of simulated time series, the proposed covariance estimator has good performance converging to the true values of the unknown observation covariance matrix. Over a simulated time series, the new method approximates the correct estimates, produced by a non-sequential Monte Carlo simulation procedure, which is used here as the gold standard. The special, but important, vector autoregressive (VAR) and time-varying VAR models are illustrated by considering London metal exchange data consisting of spot prices of aluminium, copper, lead and zinc. Copyright © 2007 John Wiley & Sons, Ltd.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://hdl.handle.net/10.1002/for.1039
File Function: Link to full text; subscription required
Download Restriction: no

Article provided by John Wiley & Sons, Ltd. in its journal Journal of Forecasting.

Volume (Year): 26 (2007)
Issue (Month): 8 ()
Pages: 551-569

as
in new window

Handle: RePEc:jof:jforec:v:26:y:2007:i:8:p:551-569
DOI: 10.1002/for.1039
Contact details of provider: Web page: http://www3.interscience.wiley.com/cgi-bin/jhome/2966

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. A. C. Harvey, 1986. "Analysis and Generalisation of a Multivariate Exponential Smoothing Model," Management Science, INFORMS, vol. 32(3), pages 374-380, March.
  2. Godolphin, E.J. & Triantafyllopoulos, Kostas, 2006. "Decomposition of time series models in state-space form," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2232-2246, May.
  3. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178, April.
  4. Fernandez, F Javier & Harvey, Andrew C, 1990. "Seemingly Unrelated Time Series Equations and a Test for Homogeneity," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(1), pages 71-81, January.
  5. Ni, Shawn & Sun, Dongchu, 2003. "Noninformative priors and frequentist risks of bayesian estimators of vector-autoregressive models," Journal of Econometrics, Elsevier, vol. 115(1), pages 159-197, July.
  6. Clinton Watkins & Michael McAleer, 2004. "Econometric modelling of non-ferrous metal prices," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 651-701, December.
  7. Andrew Harvey & Esther Ruiz & Neil Shephard, 1994. "Multivariate Stochastic Variance Models," Review of Economic Studies, Oxford University Press, vol. 61(2), pages 247-264.
  8. Christian Francq & Antony Gautier, 2004. "Large sample properties of parameter least squares estimates for time-varying arma models," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(5), pages 765-783, 09.
  9. Salvador, Manuel & Gargallo, Pilar, 2004. "Automatic monitoring and intervention in multivariate dynamic linear models," Computational Statistics & Data Analysis, Elsevier, vol. 47(3), pages 401-431, October.
  10. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501, April.
  11. Pollock, D. S. G., 2003. "Recursive estimation in econometrics," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 37-75, October.
  12. Harald Uhlig, 1997. "Bayesian Vector Autoregressions with Stochastic Volatility," Econometrica, Econometric Society, vol. 65(1), pages 59-74, January.
  13. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
  14. Filippo Moauro & Giovanni Savio, 2005. "Temporal disaggregation using multivariate structural time series models," Econometrics Journal, Royal Economic Society, vol. 8(2), pages 214-234, 07.
  15. Triantafyllopoulos, Kostas & Pikoulas, John, 2002. "Multivariate Bayesian Regression Applied to the Problem of Network Security," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 21(8), pages 579-594, December.
  16. Paul L. Anderson & Mark M. Meerschaert, 2005. "Parameter Estimation for Periodically Stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(4), pages 489-518, 07.
  17. Toni Gravelle & James Morley, 2005. "A Kalman filter approach to characterizing the Canadian term structure of interest rates," Applied Financial Economics, Taylor & Francis Journals, vol. 15(10), pages 691-705.
  18. Kadiyala, K Rao & Karlsson, Sune, 1997. "Numerical Methods for Estimation and Inference in Bayesian VAR-Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(2), pages 99-132, March-Apr.
  19. Barassi, Marco R. & Caporale, Guglielmo Maria & Hall, Stephen G., 2005. "Interest rate linkages: a Kalman filter approach to detecting structural change," Economic Modelling, Elsevier, vol. 22(2), pages 253-284, March.
  20. Triantafyllopoulos, Kostas, 2006. "Multivariate discount weighted regression and local level models," Computational Statistics & Data Analysis, Elsevier, vol. 50(12), pages 3702-3720, August.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:26:y:2007:i:8:p:551-569. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.