IDEAS home Printed from https://ideas.repec.org/a/jof/jforec/v26y2007i8p551-569.html
   My bibliography  Save this article

Covariance estimation for multivariate conditionally Gaussian dynamic linear models

Author

Listed:
  • K. Triantafyllopoulos

    (Department of Probability and Statistics, University of Sheffield, Sheffield, UK)

Abstract

In multivariate time series, estimation of the covariance matrix of observation innovations plays an important role in forecasting as it enables computation of standardized forecast error vectors as well as the computation of confidence bounds of forecasts. We develop an online, non-iterative Bayesian algorithm for estimation and forecasting. It is empirically found that, for a range of simulated time series, the proposed covariance estimator has good performance converging to the true values of the unknown observation covariance matrix. Over a simulated time series, the new method approximates the correct estimates, produced by a non-sequential Monte Carlo simulation procedure, which is used here as the gold standard. The special, but important, vector autoregressive (VAR) and time-varying VAR models are illustrated by considering London metal exchange data consisting of spot prices of aluminium, copper, lead and zinc. Copyright © 2007 John Wiley & Sons, Ltd.

Suggested Citation

  • K. Triantafyllopoulos, 2007. "Covariance estimation for multivariate conditionally Gaussian dynamic linear models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(8), pages 551-569.
  • Handle: RePEc:jof:jforec:v:26:y:2007:i:8:p:551-569
    DOI: 10.1002/for.1039
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/for.1039
    File Function: Link to full text; subscription required
    Download Restriction: no

    References listed on IDEAS

    as
    1. A. C. Harvey, 1986. "Analysis and Generalisation of a Multivariate Exponential Smoothing Model," Management Science, INFORMS, vol. 32(3), pages 374-380, March.
    2. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    3. Filippo Moauro & Giovanni Savio, 2005. "Temporal disaggregation using multivariate structural time series models," Econometrics Journal, Royal Economic Society, vol. 8(2), pages 214-234, July.
    4. Triantafyllopoulos, Kostas & Pikoulas, John, 2002. "Multivariate Bayesian Regression Applied to the Problem of Network Security," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 21(8), pages 579-594, December.
    5. Godolphin, E.J. & Triantafyllopoulos, Kostas, 2006. "Decomposition of time series models in state-space form," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2232-2246, May.
    6. Paul L. Anderson & Mark M. Meerschaert, 2005. "Parameter Estimation for Periodically Stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(4), pages 489-518, July.
    7. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    8. Toni Gravelle & James Morley, 2005. "A Kalman filter approach to characterizing the Canadian term structure of interest rates," Applied Financial Economics, Taylor & Francis Journals, vol. 15(10), pages 691-705.
    9. Fernandez, F Javier & Harvey, Andrew C, 1990. "Seemingly Unrelated Time Series Equations and a Test for Homogeneity," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(1), pages 71-81, January.
    10. Kadiyala, K Rao & Karlsson, Sune, 1997. "Numerical Methods for Estimation and Inference in Bayesian VAR-Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(2), pages 99-132, March-Apr.
    11. Ni, Shawn & Sun, Dongchu, 2003. "Noninformative priors and frequentist risks of bayesian estimators of vector-autoregressive models," Journal of Econometrics, Elsevier, vol. 115(1), pages 159-197, July.
    12. Clinton Watkins & Michael McAleer, 2004. "Econometric modelling of non-ferrous metal prices," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 651-701, December.
    13. Andrew Harvey & Esther Ruiz & Neil Shephard, 1994. "Multivariate Stochastic Variance Models," Review of Economic Studies, Oxford University Press, vol. 61(2), pages 247-264.
    14. Christian Francq & Antony Gautier, 2004. "Large sample properties of parameter least squares estimates for time-varying arma models," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(5), pages 765-783, September.
    15. Salvador, Manuel & Gargallo, Pilar, 2004. "Automatic monitoring and intervention in multivariate dynamic linear models," Computational Statistics & Data Analysis, Elsevier, vol. 47(3), pages 401-431, October.
    16. Pollock, D. S. G., 2003. "Recursive estimation in econometrics," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 37-75, October.
    17. Harald Uhlig, 1997. "Bayesian Vector Autoregressions with Stochastic Volatility," Econometrica, Econometric Society, vol. 65(1), pages 59-74, January.
    18. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    19. Barassi, Marco R. & Caporale, Guglielmo Maria & Hall, Stephen G., 2005. "Interest rate linkages: a Kalman filter approach to detecting structural change," Economic Modelling, Elsevier, vol. 22(2), pages 253-284, March.
    20. Triantafyllopoulos, Kostas, 2006. "Multivariate discount weighted regression and local level models," Computational Statistics & Data Analysis, Elsevier, vol. 50(12), pages 3702-3720, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ya-Ling Huang & Chin-Tsai Lin, 2011. "Developing an interval forecasting method to predict undulated demand," Quality & Quantity: International Journal of Methodology, Springer, vol. 45(3), pages 513-524, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:26:y:2007:i:8:p:551-569. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.