IDEAS home Printed from
   My bibliography  Save this article

A note on in-sample and out-of-sample tests for Granger causality


  • Shiu-Sheng Chen

    (Department of Economics, National Taiwan University, Taiwan)


This paper studies in-sample and out-of-sample tests for Granger causality using Monte Carlo simulation. The results show that the out-of-sample tests may be more powerful than the in-sample tests when discrete structural breaks appear in time series data. Further, an empirical example investigating Taiwan's investment-saving relationship shows that Taiwan's domestic savings may be helpful in predicting domestic investments. It further illustrates that a possible Granger causal relationship is detected by out-of-sample tests while the in-sample test fails to reject the null of non-causality. Copyright © 2005 John Wiley & Sons, Ltd.

Suggested Citation

  • Shiu-Sheng Chen, 2005. "A note on in-sample and out-of-sample tests for Granger causality," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(6), pages 453-464.
  • Handle: RePEc:jof:jforec:v:24:y:2005:i:6:p:453-464 DOI: 10.1002/for.960

    Download full text from publisher

    File URL:
    File Function: Link to full text; subscription required
    Download Restriction: no

    References listed on IDEAS

    1. Clark, Todd E. & West, Kenneth D., 2006. "Using out-of-sample mean squared prediction errors to test the martingale difference hypothesis," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 155-186.
    2. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    3. Feldstein, Martin & Horioka, Charles, 1980. "Domestic Saving and International Capital Flows," Economic Journal, Royal Economic Society, vol. 90(358), pages 314-329, June.
    4. Martin Lettau, 2001. "Consumption, Aggregate Wealth, and Expected Stock Returns," Journal of Finance, American Finance Association, vol. 56(3), pages 815-849, June.
    5. Clark, Todd E. & McCracken, Michael W., 2005. "The power of tests of predictive ability in the presence of structural breaks," Journal of Econometrics, Elsevier, vol. 124(1), pages 1-31, January.
    6. David E. Rapach & Christian E. Weber, 2004. "Financial Variables and the Simulated Out-of-Sample Forecastability of U.S. Output Growth Since 1985: An Encompassing Approach," Economic Inquiry, Western Economic Association International, vol. 42(4), pages 717-738, October.
    7. Ericsson, Neil R., 1992. "Parameter constancy, mean square forecast errors, and measuring forecast performance: An exposition, extensions, and illustration," Journal of Policy Modeling, Elsevier, vol. 14(4), pages 465-495, August.
    8. Chao, John & Corradi, Valentina & Swanson, Norman R., 2001. "Out-Of-Sample Tests For Granger Causality," Macroeconomic Dynamics, Cambridge University Press, vol. 5(04), pages 598-620, September.
    9. Hansen, Bruce E, 1997. "Approximate Asymptotic P Values for Structural-Change Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(1), pages 60-67, January.
    10. Hansen, Bruce E., 2000. "Testing for structural change in conditional models," Journal of Econometrics, Elsevier, vol. 97(1), pages 93-115, July.
    11. Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-259, April.
    12. Ashley, R & Granger, C W J & Schmalensee, R, 1980. "Advertising and Aggregate Consumption: An Analysis of Causality," Econometrica, Econometric Society, vol. 48(5), pages 1149-1167, July.
    13. Andrews, Donald W K & Ploberger, Werner, 1994. "Optimal Tests When a Nuisance Parameter Is Present Only under the Alternative," Econometrica, Econometric Society, vol. 62(6), pages 1383-1414, November.
    14. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    15. Jushan Bai & Robin L. Lumsdaine & James H. Stock, 1998. "Testing For and Dating Common Breaks in Multivariate Time Series," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 395-432.
    16. Al Awad, Mouawiya & Goodwin, Barry K., 1998. "Dynamic linkages among real interest rates in international capital markets," Journal of International Money and Finance, Elsevier, vol. 17(6), pages 881-907, December.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Zhang, Hui Jun & Dufour, Jean-Marie & Galbraith, John W., 2016. "Exchange rates and commodity prices: Measuring causality at multiple horizons," Journal of Empirical Finance, Elsevier, vol. 36(C), pages 100-120.
    2. Paulo Silva, 2015. "The information content of the open interest of credit default swaps," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 29(4), pages 381-427, November.
    3. Bastianin, Andrea & Galeotti, Marzio & Manera, Matteo, 2016. "Ethanol and field crops: Is there a price connection?," Food Policy, Elsevier, vol. 63(C), pages 53-61.
    4. Nicholas Apergis & Panagiotis G. Artikis, 2016. "Foreign Exchange Risk, Equity Risk Factors and Economic Growth," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 44(4), pages 425-445, December.
    5. Yi-Ting Chen, 2016. "Testing for Granger Causality in Moments," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 78(2), pages 265-288, April.
    6. Bastianin, Andrea & Galeotti, Marzio & Manera, Matteo, 2014. "Causality and predictability in distribution: The ethanol–food price relation revisited," Energy Economics, Elsevier, vol. 42(C), pages 152-160.
    7. Yan Carrière‐Swallow & Felipe Labbé, 2013. "Nowcasting with Google Trends in an Emerging Market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(4), pages 289-298, July.
    8. Christian Schulz, 2007. "Forecasting economic growth for Estonia : application of common factor methodologies," Bank of Estonia Working Papers 2007-09, Bank of Estonia, revised 04 Sep 2007.
    9. Batten, Jonathan A. & Ciner, Cetin & Kosedag, Arman & Lucey, Brian M., 2017. "Is the price of gold to gold mining stocks asymmetric?," Economic Modelling, Elsevier, vol. 60(C), pages 402-407.
    10. Yang, Zihui & Zhao, Yongliang, 2014. "Energy consumption, carbon emissions, and economic growth in India: Evidence from directed acyclic graphs," Economic Modelling, Elsevier, vol. 38(C), pages 533-540.
    11. repec:eee:finana:v:52:y:2017:i:c:p:309-315 is not listed on IDEAS

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:24:y:2005:i:6:p:453-464. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.