IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v52y2004i2p213-228.html
   My bibliography  Save this article

Optimal Leadtime Differentiation via Diffusion Approximations

Author

Listed:
  • Erica L. Plambeck

    (Graduate School of Business, Stanford University, Stanford, California 94305)

Abstract

This study illustrates how a manufacturer can use leadtime differentiation--selling the same product to different customers at different prices based on delivery leadtime--to simultaneously increase revenue and reduce capacity requirements. The manufacturer’s production facility is modeled as an exponential single-server queue with two classes of customers that differ in price sensitivity and delay sensitivity. The manufacturer chooses the service rate and a static price for each class of customer, and then dynamically quotes leadtimes to potential customers and decides the order in which customers are processed. The arrival rate for each class decreases linearly with price and leadtime. The manufacturer’s objective is to maximize profit, subject to the constraint that each customer must be processed within the promised leadtime. Assuming that some customers will tolerate a long delivery leadtime, we show that this problem has a simple near-optimal solution. Under our proposed policy, capacity utilization is near 100%. Impatient customers pay a premium for immediate delivery and receive priority in scheduling, whereas patient customers are quoted a leadtime proportional to the current queue length. Queue length and leadtime can be closely approximated by a reflected Ornstein-Uhlenbeck diffusion process. Hence, we have a closed form expression for profit, and choose prices and capacity to optimize this. In case customers may choose either the class 1 deal or the class 2 deal, the proposed policy is made incentive compatible by quoting a leadtime for the class 2 (patient) customers that is longer than the actual queueing delay.

Suggested Citation

  • Erica L. Plambeck, 2004. "Optimal Leadtime Differentiation via Diffusion Approximations," Operations Research, INFORMS, vol. 52(2), pages 213-228, April.
  • Handle: RePEc:inm:oropre:v:52:y:2004:i:2:p:213-228
    DOI: 10.1287/opre.1030.0089
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1030.0089
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1030.0089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. So, Kut C. & Song, Jing-Sheng, 1998. "Price, delivery time guarantees and capacity selection," European Journal of Operational Research, Elsevier, vol. 111(1), pages 28-49, November.
    2. Lawrence M. Wein & Philippe B. Chevalier, 1992. "A Broader View of the Job-Shop Scheduling Problem," Management Science, INFORMS, vol. 38(7), pages 1018-1033, July.
    3. Izak Duenyas & Wallace J. Hopp, 1995. "Quoting Customer Lead Times," Management Science, INFORMS, vol. 41(1), pages 43-57, January.
    4. Constantinos Maglaras & Assaf Zeevi, 2003. "Pricing and Capacity Sizing for Systems with Shared Resources: Approximate Solutions and Scaling Relations," Management Science, INFORMS, vol. 49(8), pages 1018-1038, August.
    5. James K. Weeks, 1979. "A Simulation Study of Predictable Due-Dates," Management Science, INFORMS, vol. 25(4), pages 363-373, April.
    6. Jan A. Van Mieghem, 2000. "Price and Service Discrimination in Queuing Systems: Incentive Compatibility of Gc\mu Scheduling," Management Science, INFORMS, vol. 46(9), pages 1249-1267, September.
    7. J. W. M. Bertrand, 1983. "The Effect of Workload Dependent Due-Dates on Job Shop Performance," Management Science, INFORMS, vol. 29(7), pages 799-816, July.
    8. Leonard Kleinrock, 1967. "Optimum Bribing for Queue Position," Operations Research, INFORMS, vol. 15(2), pages 304-318, April.
    9. Haim Mendelson & Seungjin Whang, 1990. "Optimal Incentive-Compatible Priority Pricing for the M/M/1 Queue," Operations Research, INFORMS, vol. 38(5), pages 870-883, October.
    10. Lode Li & Yew Sing Lee, 1994. "Pricing and Delivery-Time Performance in a Competitive Environment," Management Science, INFORMS, vol. 40(5), pages 633-646, May.
    11. A. Puhalskii, 1994. "On the Invariance Principle for the First Passage Time," Mathematics of Operations Research, INFORMS, vol. 19(4), pages 946-954, November.
    12. Lawrence M. Wein, 1991. "Due-Date Setting and Priority Sequencing in a Multiclass M/G/1 Queue," Management Science, INFORMS, vol. 37(7), pages 834-850, July.
    13. Phillip J. Lederer & Lode Li, 1997. "Pricing, Production, Scheduling, and Delivery-Time Competition," Operations Research, INFORMS, vol. 45(3), pages 407-420, June.
    14. S. Rao & E. R. Petersen, 1998. "Optimal Pricing of Priority Services," Operations Research, INFORMS, vol. 46(1), pages 46-56, February.
    15. Pinar Keskinocak & R. Ravi & Sridhar Tayur, 2001. "Scheduling and Reliable Lead-Time Quotation for Orders with Availability Intervals and Lead-Time Sensitive Revenues," Management Science, INFORMS, vol. 47(2), pages 264-279, February.
    16. Izak Duenyas, 1995. "Single Facility Due Date Setting with Multiple Customer Classes," Management Science, INFORMS, vol. 41(4), pages 608-619, April.
    17. Mor Armony & Constantinos Maglaras, 2004. "Contact Centers with a Call-Back Option and Real-Time Delay Information," Operations Research, INFORMS, vol. 52(4), pages 527-545, August.
    18. Kenneth R. Baker, 1984. "Sequencing Rules and Due-Date Assignments in a Job Shop," Management Science, INFORMS, vol. 30(9), pages 1093-1104, September.
    19. Robert J. Dolan, 1978. "Incentive Mechanisms for Priority Queuing Problems," Bell Journal of Economics, The RAND Corporation, vol. 9(2), pages 421-436, Autumn.
    20. Suresh Chand & Dilip Chhajed, 1992. "A Single Machine Model for Determination of Optimal Due Dates and Sequence," Operations Research, INFORMS, vol. 40(3), pages 596-602, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Philipp Afèche & J. Michael Pavlin, 2016. "Optimal Price/Lead-Time Menus for Queues with Customer Choice: Segmentation, Pooling, and Strategic Delay," Management Science, INFORMS, vol. 62(8), pages 2412-2436, August.
    2. Philipp Afèche & Opher Baron & Yoav Kerner, 2013. "Pricing Time-Sensitive Services Based on Realized Performance," Manufacturing & Service Operations Management, INFORMS, vol. 15(3), pages 492-506, July.
    3. Hossein Abouee‐Mehrizi & Ata Ghareaghaji Zare & Renata A. Konrad, 2022. "Pricing in Service Systems with Rational Balking and Abandonment of Time‐Sensitive Customers," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 495-510, February.
    4. A. Baykal Hafızoğlu & Esma S. Gel & Pınar Keskinocak, 2016. "Price and Lead Time Quotation for Contract and Spot Customers," Operations Research, INFORMS, vol. 64(2), pages 406-415, April.
    5. Zhu, Stuart X., 2015. "Integration of capacity, pricing, and lead-time decisions in a decentralized supply chain," International Journal of Production Economics, Elsevier, vol. 164(C), pages 14-23.
    6. Terry A. Taylor, 2018. "On-Demand Service Platforms," Manufacturing & Service Operations Management, INFORMS, vol. 20(4), pages 704-720, October.
    7. Weixin Shang & Liming Liu, 2011. "Promised Delivery Time and Capacity Games in Time-Based Competition," Management Science, INFORMS, vol. 57(3), pages 599-610, March.
    8. Benioudakis, Myron & Burnetas, Apostolos & Ioannou, George, 2021. "Lead-time quotations in unobservable make-to-order systems with strategic customers: Risk aversion, load control and profit maximization," European Journal of Operational Research, Elsevier, vol. 289(1), pages 165-176.
    9. Jiejian Feng & Liming Liu & Xiaoming Liu, 2011. "TECHNICAL NOTE---An Optimal Policy for Joint Dynamic Price and Lead-Time Quotation," Operations Research, INFORMS, vol. 59(6), pages 1523-1527, December.
    10. Plambeck, Erica L. & Ward, Amy R., 2005. "Optimal Control of High-Volume Assemble-to-Order Systems," Research Papers 1890, Stanford University, Graduate School of Business.
    11. Philipp Afèche, 2013. "Incentive-Compatible Revenue Management in Queueing Systems: Optimal Strategic Delay," Manufacturing & Service Operations Management, INFORMS, vol. 15(3), pages 423-443, July.
    12. Mor Armony & Erica Plambeck & Sridhar Seshadri, 2009. "Sensitivity of Optimal Capacity to Customer Impatience in an Unobservable M/M/S Queue (Why You Shouldn't Shout at the DMV)," Manufacturing & Service Operations Management, INFORMS, vol. 11(1), pages 19-32, June.
    13. Erica L. Plambeck & Amy R. Ward, 2006. "Optimal Control of a High-Volume Assemble-to-Order System," Mathematics of Operations Research, INFORMS, vol. 31(3), pages 453-477, August.
    14. Zhang, Jian & Nault, Barrie R. & Tu, Yiliu, 2015. "A dynamic pricing strategy for a 3PL provider with heterogeneous customers," International Journal of Production Economics, Elsevier, vol. 169(C), pages 31-43.
    15. Jayaswal, Sachin & Jewkes, Elizabeth & Ray, Saibal, 2011. "Product differentiation and operations strategy in a capacitated environment," European Journal of Operational Research, Elsevier, vol. 210(3), pages 716-728, May.
    16. Sabri Çelik & Costis Maglaras, 2008. "Dynamic Pricing and Lead-Time Quotation for a Multiclass Make-to-Order Queue," Management Science, INFORMS, vol. 54(6), pages 1132-1146, June.
    17. Noori-Daryan, Mahsa & Taleizadeh, Ata Allah & Jolai, Fariborz, 2019. "Analyzing pricing, promised delivery lead time, supplier-selection, and ordering decisions of a multi-national supply chain under uncertain environment," International Journal of Production Economics, Elsevier, vol. 209(C), pages 236-248.
    18. Mustafa Akan & Barı ş Ata & Tava Olsen, 2012. "Congestion-Based Lead-Time Quotation for Heterogenous Customers with Convex-Concave Delay Costs: Optimality of a Cost-Balancing Policy Based on Convex Hull Functions," Operations Research, INFORMS, vol. 60(6), pages 1505-1519, December.
    19. Vibhanshu Abhishek & Mustafa Dogan & Alexandre Jacquillat, 2021. "Strategic Timing and Dynamic Pricing for Online Resource Allocation," Management Science, INFORMS, vol. 67(8), pages 4880-4907, August.
    20. Vasiliki Kostami, 2020. "Price and Lead time Disclosure Strategies in Inventory Systems," Production and Operations Management, Production and Operations Management Society, vol. 29(12), pages 2760-2788, December.
    21. Jin, Xianfei & Li, Kunpeng & Sivakumar, Appa Iyer, 2013. "Scheduling and optimal delivery time quotation for customers with time sensitive demand," International Journal of Production Economics, Elsevier, vol. 145(1), pages 349-358.
    22. Barış Ata & Tava Lennon Olsen, 2009. "Near-Optimal Dynamic Lead-Time Quotation and Scheduling Under Convex-Concave Customer Delay Costs," Operations Research, INFORMS, vol. 57(3), pages 753-768, June.
    23. Slotnick, Susan A., 2011. "Optimal and heuristic lead-time quotation for an integrated steel mill with a minimum batch size," European Journal of Operational Research, Elsevier, vol. 210(3), pages 527-536, May.
    24. Mor Armony & Nahum Shimkin & Ward Whitt, 2009. "The Impact of Delay Announcements in Many-Server Queues with Abandonment," Operations Research, INFORMS, vol. 57(1), pages 66-81, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barış Ata & Tava Lennon Olsen, 2009. "Near-Optimal Dynamic Lead-Time Quotation and Scheduling Under Convex-Concave Customer Delay Costs," Operations Research, INFORMS, vol. 57(3), pages 753-768, June.
    2. Philipp Afèche & Opher Baron & Yoav Kerner, 2013. "Pricing Time-Sensitive Services Based on Realized Performance," Manufacturing & Service Operations Management, INFORMS, vol. 15(3), pages 492-506, July.
    3. Slotnick, Susan A. & Sobel, Matthew J., 2005. "Manufacturing lead-time rules: Customer retention versus tardiness costs," European Journal of Operational Research, Elsevier, vol. 163(3), pages 825-856, June.
    4. Roman Kapuscinski & Sridhar Tayur, 2007. "Reliable Due-Date Setting in a Capacitated MTO System with Two Customer Classes," Operations Research, INFORMS, vol. 55(1), pages 56-74, February.
    5. ElHafsi, Mohsen, 2000. "An operational decision model for lead-time and price quotation in congested manufacturing systems," European Journal of Operational Research, Elsevier, vol. 126(2), pages 355-370, October.
    6. Tanja Mlinar & Philippe Chevalier, 2016. "Pooling heterogeneous products for manufacturing environments," 4OR, Springer, vol. 14(2), pages 173-200, June.
    7. Mor Armony & Erica Plambeck & Sridhar Seshadri, 2009. "Sensitivity of Optimal Capacity to Customer Impatience in an Unobservable M/M/S Queue (Why You Shouldn't Shout at the DMV)," Manufacturing & Service Operations Management, INFORMS, vol. 11(1), pages 19-32, June.
    8. Mark L. Spearman & Rachel Q. Zhang, 1999. "Optimal Lead Time Policies," Management Science, INFORMS, vol. 45(2), pages 290-295, February.
    9. Weixin Shang & Liming Liu, 2011. "Promised Delivery Time and Capacity Games in Time-Based Competition," Management Science, INFORMS, vol. 57(3), pages 599-610, March.
    10. Philipp Afèche & Haim Mendelson, 2004. "Pricing and Priority Auctions in Queueing Systems with a Generalized Delay Cost Structure," Management Science, INFORMS, vol. 50(7), pages 869-882, July.
    11. Enns, S. T., 1998. "Lead time selection and the behaviour of work flow in job shops," European Journal of Operational Research, Elsevier, vol. 109(1), pages 122-136, August.
    12. Charnsirisakskul, Kasarin & Griffin, Paul M. & Keskinocak, Pinar, 2006. "Pricing and scheduling decisions with leadtime flexibility," European Journal of Operational Research, Elsevier, vol. 171(1), pages 153-169, May.
    13. Pinar Keskinocak & R. Ravi & Sridhar Tayur, 2001. "Scheduling and Reliable Lead-Time Quotation for Orders with Availability Intervals and Lead-Time Sensitive Revenues," Management Science, INFORMS, vol. 47(2), pages 264-279, February.
    14. Seçil Savaşaneril & Paul M. Griffin & Pınar Keskinocak, 2010. "Dynamic Lead-Time Quotation for an M/M/1 Base-Stock Inventory Queue," Operations Research, INFORMS, vol. 58(2), pages 383-395, April.
    15. Bertrand, J. W. M. & van Ooijen, H. P. G., 2000. "Customer order lead times for production based on lead time and tardiness costs," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 257-265, March.
    16. Gökçe Kahveciog̃lu & Barış Balcıog̃lu, 2016. "Coping with production time variability via dynamic lead-time quotation," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(4), pages 877-898, October.
    17. Modarres, Mohammad & Sharifyazdi, Mehdi, 2009. "Revenue management approach to stochastic capacity allocation problem," European Journal of Operational Research, Elsevier, vol. 192(2), pages 442-459, January.
    18. Sabri Çelik & Costis Maglaras, 2008. "Dynamic Pricing and Lead-Time Quotation for a Multiclass Make-to-Order Queue," Management Science, INFORMS, vol. 54(6), pages 1132-1146, June.
    19. Easton, Fred F. & Moodie, Douglas R., 1999. "Pricing and lead time decisions for make-to-order firms with contingent orders," European Journal of Operational Research, Elsevier, vol. 116(2), pages 305-318, July.
    20. Nekoiemehr, Nooshin & Zhang, Guoqing & Selvarajah, Esaignani, 2019. "Due date quotation in a dual-channel supply chain," International Journal of Production Economics, Elsevier, vol. 215(C), pages 102-111.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:52:y:2004:i:2:p:213-228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.