IDEAS home Printed from https://ideas.repec.org/a/inm/ormsom/v15y2013i3p473-491.html
   My bibliography  Save this article

Linking Cyclicality and Product Quality

Author

Listed:
  • Manuel E. Sosa

    (Technology and Operations Management, INSEAD, Singapore 138676)

  • Jürgen Mihm

    (Technology and Operations Management, INSEAD, 77300 Fontainebleau, France)

  • Tyson R. Browning

    (Department of Information Systems and Supply Chain Management, Neeley School of Business, Texas Christian University, Fort Worth, Texas 76129)

Abstract

This paper examines the impact of architectural decisions on the level of defects in a product. We view products as collections of components linked together to work as an integrated whole. Previous work has established modularity (how decoupled a component is from other product components) as a critical determinant of defects, and we confirm its importance. Yet our study also provides empirical evidence for a relationship between product quality and cyclicality (the extent to which a component depends on itself via other product components). We find cyclicality to be a determinant of quality that is distinct from, and no less important than, modularity. Extending this main result, we show how the cyclicality–quality relationship is affected by the centrality of a component in a cycle and the distribution of a cycle across product modules. These findings, which are based on an analysis of open source software development projects, have implications for the study and design of complex systems.

Suggested Citation

  • Manuel E. Sosa & Jürgen Mihm & Tyson R. Browning, 2013. "Linking Cyclicality and Product Quality," Manufacturing & Service Operations Management, INFORMS, vol. 15(3), pages 473-491, July.
  • Handle: RePEc:inm:ormsom:v:15:y:2013:i:3:p:473-491
    DOI: 10.1287/msom.2013.0432
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/msom.2013.0432
    Download Restriction: no

    File URL: https://libkey.io/10.1287/msom.2013.0432?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jürgen Mihm & Christoph Loch & Arnd Huchzermeier, 2003. "Problem--Solving Oscillations in Complex Engineering Projects," Management Science, INFORMS, vol. 49(6), pages 733-750, June.
    2. Bilal Gokpinar & Wallace J. Hopp & Seyed M. R. Iravani, 2010. "The Impact of Misalignment of Organizational Structure and Product Architecture on Quality in Complex Product Development," Management Science, INFORMS, vol. 56(3), pages 468-484, March.
    3. Robert P. Smith & Steven D. Eppinger, 1997. "A Predictive Model of Sequential Iteration in Engineering Design," Management Science, INFORMS, vol. 43(8), pages 1104-1120, August.
    4. Alan MacCormack & John Rusnak & Carliss Y. Baldwin, 2006. "Exploring the Structure of Complex Software Designs: An Empirical Study of Open Source and Proprietary Code," Management Science, INFORMS, vol. 52(7), pages 1015-1030, July.
    5. Michael T. Pich & Christoph H. Loch & Arnoud De Meyer, 2002. "On Uncertainty, Ambiguity, and Complexity in Project Management," Management Science, INFORMS, vol. 48(8), pages 1008-1023, August.
    6. Lyra J. Colfer & Carliss Y. Baldwin, 2010. "The Mirroring Hypothesis: Theory, Evidence and Exceptions," Harvard Business School Working Papers 10-058, Harvard Business School, revised Jun 2010.
    7. Eppinger, Steven D. & Browning, Tyson R., 2012. "Design Structure Matrix Methods and Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262017520, December.
    8. Robert P. Smith & Steven D. Eppinger, 1997. "Identifying Controlling Features of Engineering Design Iteration," Management Science, INFORMS, vol. 43(3), pages 276-293, March.
    9. Carliss Y. Baldwin & Kim B. Clark, 2000. "Design Rules, Volume 1: The Power of Modularity," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262024667, December.
    10. MacCormack, Alan & Baldwin, Carliss & Rusnak, John, 2012. "Exploring the duality between product and organizational architectures: A test of the “mirroring” hypothesis," Research Policy, Elsevier, vol. 41(8), pages 1309-1324.
    11. Manuel E. Sosa & Steven D. Eppinger & Craig M. Rowles, 2004. "The Misalignment of Product Architecture and Organizational Structure in Complex Product Development," Management Science, INFORMS, vol. 50(12), pages 1674-1689, December.
    12. Viswanathan Krishnan & Steven D. Eppinger & Daniel E. Whitney, 1997. "A Model-Based Framework to Overlap Product Development Activities," Management Science, INFORMS, vol. 43(4), pages 437-451, April.
    13. Jeffrey A. Roberts & Il-Horn Hann & Sandra A. Slaughter, 2006. "Understanding the Motivations, Participation, and Performance of Open Source Software Developers: A Longitudinal Study of the Apache Projects," Management Science, INFORMS, vol. 52(7), pages 984-999, July.
    14. Herbert A. Simon, 1996. "The Sciences of the Artificial, 3rd Edition," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262691914, December.
    15. Christian Terwiesch & Christoph H. Loch & Arnoud De Meyer, 2002. "Exchanging Preliminary Information in Concurrent Engineering: Alternative Coordination Strategies," Organization Science, INFORMS, vol. 13(4), pages 402-419, August.
    16. Dan Braha & Yaneer Bar-Yam, 2007. "The Statistical Mechanics of Complex Product Development: Empirical and Analytical Results," Management Science, INFORMS, vol. 53(7), pages 1127-1145, July.
    17. Ulrich, Karl, 1995. "The role of product architecture in the manufacturing firm," Research Policy, Elsevier, vol. 24(3), pages 419-440, May.
    18. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    19. Anna Cabigiosu & Arnaldo Camuffo, 2012. "Beyond the “Mirroring” Hypothesis: Product Modularity and Interorganizational Relations in the Air Conditioning Industry," Organization Science, INFORMS, vol. 23(3), pages 686-703, June.
    20. Karthik Ramachandran & V. Krishnan, 2008. "Design Architecture and Introduction Timing for Rapidly Improving Industrial Products," Manufacturing & Service Operations Management, INFORMS, vol. 10(1), pages 149-171, December.
    21. Thomas H. Klier, 2009. "From tail fins to hybrids: How Detroit lost its dominance of the U.S. auto market," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 33(Q II), pages 2-17.
    22. Sascha O. Becker & Andrea Ichino, 2002. "Estimation of average treatment effects based on propensity scores," Stata Journal, StataCorp LP, vol. 2(4), pages 358-377, November.
    23. Mar Fuentes-Fuentes, M. & Albacete-Sáez, Carlos A. & Lloréns-Montes, F. Javier, 2004. "The impact of environmental characteristics on TQM principles and organizational performance," Omega, Elsevier, vol. 32(6), pages 425-442, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Phanish Puranam & Murali Swamy, 2016. "How Initial Representations Shape Coupled Learning Processes," Organization Science, INFORMS, vol. 27(2), pages 323-335, April.
    2. Angelopoulos, Spyros & Bendoly, Elliot & Fransoo, Jan C. & Hoberg, Kai & Ou, Carol & Tenhiälä, Antti, 2023. "Digital transformation in operations management: Fundamental change through agency reversal," Other publications TiSEM 373742f5-0b87-4276-9ed6-8, Tilburg University, School of Economics and Management.
    3. Sungyong Um & Bin Zhang & Sunil Wattal & Youngjin Yoo, 2023. "Software Components and Product Variety in a Platform Ecosystem: A Dynamic Network Analysis of WordPress," Information Systems Research, INFORMS, vol. 34(4), pages 1339-1374, December.
    4. Fabricio Eidelwein & Fabio Antonio Sartori Piran & Daniel Pacheco Lacerda & Aline Dresch & Luis Henrique Rodrigues, 2018. "Exploratory Analysis of Modularization Strategy Based on the Theory of Constraints Thinking Process," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 19(2), pages 111-122, June.
    5. Narayan Ramasubbu & Jennifer Shang & Jerrold H. May & Youxu Tjader & Luis Vargas, 2019. "Task Interdependence and Firm Performance in Outsourced Service Operations," Manufacturing & Service Operations Management, INFORMS, vol. 21(3), pages 658-673, July.
    6. Mohsen Jafari Songhori & Madjid Tavana & Takao Terano, 2020. "Product development team formation: effects of organizational- and product-related factors," Computational and Mathematical Organization Theory, Springer, vol. 26(1), pages 88-122, March.
    7. Stylianos Kavadias & Karl T. Ulrich, 2020. "Innovation and New Product Development: Reflections and Insights from the Research Published in the First 20 Years of Manufacturing & Service Operations Management," Manufacturing & Service Operations Management, INFORMS, vol. 22(1), pages 84-92, January.
    8. Manuel E. Sosa & Martin Gargiulo & Craig Rowles, 2015. "Can Informal Communication Networks Disrupt Coordination in New Product Development Projects?," Organization Science, INFORMS, vol. 26(4), pages 1059-1078, August.
    9. Baldwin, Carliss & MacCormack, Alan & Rusnak, John, 2014. "Hidden structure: Using network methods to map system architecture," Research Policy, Elsevier, vol. 43(8), pages 1381-1397.
    10. Luo, Jianxi & Triulzi, Giorgio, 2018. "Cyclic dependence, vertical integration, and innovation: The case of Japanese electronics sector in the 1990s," Technological Forecasting and Social Change, Elsevier, vol. 132(C), pages 46-55.
    11. Aleda Roth & Eve Rosenzweig, 2020. "Advancing Empirical Science in Operations Management Research: A Clarion Call to Action," Manufacturing & Service Operations Management, INFORMS, vol. 22(1), pages 179-190, January.
    12. Peng Ma & Yeming Gong & Mingzhou Jin, 2019. "Quality efforts in medical supply chains considering patient benefits," Post-Print hal-02312386, HAL.
    13. Ashish Arora & Michelle Gittelman & Sarah Kaplan & John Lynch & Will Mitchell & Nicolaj Siggelkow & Chi-Hyon Lee & Manuela N. Hoehn-Weiss & Samina Karim, 2016. "Grouping interdependent tasks: Using spectral graph partitioning to study complex systems," Strategic Management Journal, Wiley Blackwell, vol. 37(1), pages 177-191, January.
    14. Ma, Peng & Gong, Yeming & Jin, Mingzhou, 2019. "Quality efforts in medical supply chains considering patient benefits," European Journal of Operational Research, Elsevier, vol. 279(3), pages 795-807.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christopher M. Schlick & Soenke Duckwitz & Sebastian Schneider, 2013. "Project dynamics and emergent complexity," Computational and Mathematical Organization Theory, Springer, vol. 19(4), pages 480-515, December.
    2. Mohsen Jafari Songhori & Javad Nasiry, 2020. "Organizational Structure, Subsystem Interaction Pattern, and Misalignments in Complex NPD Projects," Production and Operations Management, Production and Operations Management Society, vol. 29(1), pages 214-231, January.
    3. Manuel E. Sosa & Martin Gargiulo & Craig Rowles, 2015. "Can Informal Communication Networks Disrupt Coordination in New Product Development Projects?," Organization Science, INFORMS, vol. 26(4), pages 1059-1078, August.
    4. Ashish Arora & Michelle Gittelman & Sarah Kaplan & John Lynch & Will Mitchell & Nicolaj Siggelkow & Chi-Hyon Lee & Manuela N. Hoehn-Weiss & Samina Karim, 2016. "Grouping interdependent tasks: Using spectral graph partitioning to study complex systems," Strategic Management Journal, Wiley Blackwell, vol. 37(1), pages 177-191, January.
    5. Baldwin, Carliss & MacCormack, Alan & Rusnak, John, 2014. "Hidden structure: Using network methods to map system architecture," Research Policy, Elsevier, vol. 43(8), pages 1381-1397.
    6. Oliver Baumann, 2015. "Distributed Problem Solving in Modular Systems: the Benefit of Temporary Coordination Neglect," Systems Research and Behavioral Science, Wiley Blackwell, vol. 32(1), pages 124-136, January.
    7. Mohsen Jafari Songhori & Madjid Tavana & Takao Terano, 2020. "Product development team formation: effects of organizational- and product-related factors," Computational and Mathematical Organization Theory, Springer, vol. 26(1), pages 88-122, March.
    8. Morita, Hodaka & Nakajima, Kentaro & Tsuru, Tsuyoshi, 2017. "Product Architecture and Intra-Firm Coordination: Theory and Evidence," Discussion Paper Series 659, Institute of Economic Research, Hitotsubashi University.
    9. Manuel E. Sosa & Steven D. Eppinger & Craig M. Rowles, 2004. "The Misalignment of Product Architecture and Organizational Structure in Complex Product Development," Management Science, INFORMS, vol. 50(12), pages 1674-1689, December.
    10. Pedro Parraguez & Steven Eppinger & Anja Maier, 2016. "Characterizing Design Process Interfaces as Organization Networks: Insights for Engineering Systems Management," Systems Engineering, John Wiley & Sons, vol. 19(2), pages 158-173, March.
    11. Victoria L. Mitchell & Barrie R. Nault, 2007. "Cooperative Planning, Uncertainty, and Managerial Control in Concurrent Design," Management Science, INFORMS, vol. 53(3), pages 375-389, March.
    12. Cabigiosu, Anna & Zirpoli, Francesco & Camuffo, Arnaldo, 2013. "Modularity, interfaces definition and the integration of external sources of innovation in the automotive industry," Research Policy, Elsevier, vol. 42(3), pages 662-675.
    13. Paulo J. Gomes & Nitin R. Joglekar, 2008. "Linking modularity with problem solving and coordination efforts," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 29(5), pages 443-457.
    14. Jaegul Lee & Nicholas Berente, 2012. "Digital Innovation and the Division of Innovative Labor: Digital Controls in the Automotive Industry," Organization Science, INFORMS, vol. 23(5), pages 1428-1447, October.
    15. Luo, Jianxi & Triulzi, Giorgio, 2018. "Cyclic dependence, vertical integration, and innovation: The case of Japanese electronics sector in the 1990s," Technological Forecasting and Social Change, Elsevier, vol. 132(C), pages 46-55.
    16. MacCormack, Alan & Baldwin, Carliss & Rusnak, John, 2012. "Exploring the duality between product and organizational architectures: A test of the “mirroring” hypothesis," Research Policy, Elsevier, vol. 41(8), pages 1309-1324.
    17. David A. Broniatowski, 2018. "Building the tower without climbing it: Progress in engineering systems," Systems Engineering, John Wiley & Sons, vol. 21(3), pages 259-281, May.
    18. Sungyong Um & Bin Zhang & Sunil Wattal & Youngjin Yoo, 2023. "Software Components and Product Variety in a Platform Ecosystem: A Dynamic Network Analysis of WordPress," Information Systems Research, INFORMS, vol. 34(4), pages 1339-1374, December.
    19. Samina Karim & Chi‐Hyon Lee & Manuela N. Hoehn‐Weiss, 2023. "Task bottlenecks and resource bottlenecks: A holistic examination of task systems through an organization design lens," Strategic Management Journal, Wiley Blackwell, vol. 44(8), pages 1839-1878, August.
    20. Nicholas Burton & Peter Galvin, 2022. "The effect of technology and regulation on the co-evolution of product and industry architecture," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 31(4), pages 1056-1085.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormsom:v:15:y:2013:i:3:p:473-491. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.