IDEAS home Printed from https://ideas.repec.org/b/mtp/titles/0262017520.html
   My bibliography  Save this book

Design Structure Matrix Methods and Applications

Author

Listed:
  • Eppinger, Steven D.

    () (MIT Sloan School of Management)

  • Browning, Tyson R.

    () (TCU Neeley School of Business)

Abstract

Design structure matrix (DSM) is a straightforward and flexible modeling technique that can be used for designing, developing, and managing complex systems. DSM offers network modeling tools that represent the elements of a system and their interactions, thereby highlighting the system’s architecture (or designed structure). Its advantages include compact format, visual nature, intuitive representation, powerful analytical capacity, and flexibility. Used primarily so far in the area of engineering management, DSM is increasingly being applied to complex issues in health care management, financial systems, public policy, natural sciences, and social systems. This book offers a clear and concise explanation of DSM methods for practitioners and researchers. The book’s four sections correspond to the four primary types of DSM models, offering tools for representing product architectures, organization architectures, process architectures, and multidomain architectures (which combine different types of DSM models to represent multiple domains simultaneously). In each section, a chapter introducing the technique is followed by a chapter of examples showing a variety of applications of that DSM type. The forty-four applications represent a wide range of industries (including automotive, aerospace, electronics, building, and pharmaceutical), countries (among them Australia, Germany, Japan, Turkey, and the United State), and problems addressed (modularity, outsourcing, system integration, knowledge management, and others).

Suggested Citation

  • Eppinger, Steven D. & Browning, Tyson R., 2012. "Design Structure Matrix Methods and Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262017520, January.
  • Handle: RePEc:mtp:titles:0262017520
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junguang Zhang & Xiwei Song & Hongyu Chen & Ruixia (Sandy) Shi, 2016. "Determination of critical chain project buffer based on information flow interactions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(9), pages 1146-1157, September.
    2. Robert Schmidt & Kasper Sanchez Vibaek & Simon Austin, 2014. "Evaluating the adaptability of an industrialized building using dependency structure matrices," Construction Management and Economics, Taylor & Francis Journals, vol. 32(1-2), pages 160-182, February.
    3. Jeeeun Kim & Sungjoo Lee, 2017. "Forecasting and identifying multi-technology convergence based on patent data: the case of IT and BT industries in 2020," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(1), pages 47-65, April.
    4. Zhang, Junguang & Song, Xiwei & Díaz, Estrella, 2016. "Project buffer sizing of a critical chain based on comprehensive resource tightness," European Journal of Operational Research, Elsevier, vol. 248(1), pages 174-182.
    5. Cole, Mara, 2014. "Towards proactive airport security management: Supporting decision making through systematic threat scenario assessment," Journal of Air Transport Management, Elsevier, vol. 35(C), pages 12-18.
    6. Lin, Jun & Qian, Yanjun & Cui, Wentian & Goh, Thong Ngee, 2015. "An effective approach for scheduling coupled activities in development projects," European Journal of Operational Research, Elsevier, vol. 243(1), pages 97-108.

    More about this item

    Keywords

    management; systems theory;

    JEL classification:

    • M1 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration
    • P0 - Economic Systems - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mtp:titles:0262017520. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Kristin Waites). General contact details of provider: http://mitpress.mit.edu .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.