IDEAS home Printed from https://ideas.repec.org/a/inm/ormksc/v29y2010i6p988-993.html
   My bibliography  Save this article

Commentary--Bidders' Experience and Learning in Online Auctions: Issues and Implications

Author

Listed:
  • Kannan Srinivasan

    () (Tepper School of Business, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213)

  • Xin Wang

    () (International Business School, Brandeis University, Waltham, Massachusetts 02454)

Abstract

This study explores the implications of rejecting the sealed-bid abstraction proposed by Zeithammer and Adams [Zeithammer, R., C. Adams. 2010. The sealed-bid abstraction in online auctions. Marketing Sci. 29(6) 964-987]. Using a conditional order statistic model that relies on the joint distribution of the top two proxy bids of an auction, Zeithammer and Adams show that inexperienced bidders' reactive bidding is the main cause of the rejection of the sealed-bid abstraction. Their empirical study suggests that a large percentage of bidders reactively bid, and there is weak evolutionary pressure for bidders to converge to sealed bidding. We discuss theoretical implications of this rejection and the role of bidder experience, as well as inferences about bidder learning. Tracking an inexperienced bidder's bidding behavior over time, we show that bidders learn and their bidding strategy gravitates toward rational bidding. Potential biases in bidder experience measurement and bidder learning can be assessed using a cross-sectional, time-series data set that tracks a random sample of new eBay bidders. Learning speed is faster with their complete bidding history rather than feedback ratings or winning observations only. We highlight the importance of proper measures of bidder experience and its effect on bidding strategy evolutions, both of which play important roles in clarifying bidding behavior in online auctions.

Suggested Citation

  • Kannan Srinivasan & Xin Wang, 2010. "Commentary--Bidders' Experience and Learning in Online Auctions: Issues and Implications," Marketing Science, INFORMS, vol. 29(6), pages 988-993, 11-12.
  • Handle: RePEc:inm:ormksc:v:29:y:2010:i:6:p:988-993
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mksc.1100.0581
    Download Restriction: no

    References listed on IDEAS

    as
    1. Marshall Robert C. & Meurer Michael J. & Richard Jean-Francois & Stromquist Walter, 1994. "Numerical Analysis of Asymmetric First Price Auctions," Games and Economic Behavior, Elsevier, vol. 7(2), pages 193-220, September.
    2. Eric Maskin & John Riley, 2000. "Asymmetric Auctions," Review of Economic Studies, Oxford University Press, vol. 67(3), pages 413-438.
    3. Alvin E. Roth & Axel Ockenfels, 2002. "Last-Minute Bidding and the Rules for Ending Second-Price Auctions: Evidence from eBay and Amazon Auctions on the Internet," American Economic Review, American Economic Association, vol. 92(4), pages 1093-1103, September.
    4. Donald B. Hausch, 1987. "An Asymmetric Common-Value Auction Model," RAND Journal of Economics, The RAND Corporation, vol. 18(4), pages 611-621, Winter.
    5. Eric D. Darr & Linda Argote & Dennis Epple, 1995. "The Acquisition, Transfer, and Depreciation of Knowledge in Service Organizations: Productivity in Franchises," Management Science, INFORMS, vol. 41(11), pages 1750-1762, November.
    6. Bajari, Patrick & Hortacsu, Ali, 2003. " The Winner's Curse, Reserve Prices, and Endogenous Entry: Empirical Insights from eBay Auctions," RAND Journal of Economics, The RAND Corporation, vol. 34(2), pages 329-355, Summer.
    7. Robert Zeithammer & Christopher Adams, 2010. "The Sealed-Bid Abstraction in Online Auctions," Marketing Science, INFORMS, vol. 29(6), pages 964-987, 11-12.
    8. Ockenfels, Axel & Roth, Alvin E., 2006. "Late and multiple bidding in second price Internet auctions: Theory and evidence concerning different rules for ending an auction," Games and Economic Behavior, Elsevier, vol. 55(2), pages 297-320, May.
    9. Eric T. Bradlow & Young-Hoon Park, 2007. "Bayesian Estimation of Bid Sequences in Internet Auctions Using a Generalized Record-Breaking Model," Marketing Science, INFORMS, vol. 26(2), pages 218-229, 03-04.
    10. Xin Wang & Ye Hu, 2009. "The effect of experience on Internet auction bidding dynamics," Marketing Letters, Springer, vol. 20(3), pages 245-261, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ernan Haruvy & Peter T. L. Popkowski Leszczyc, 2015. "The Loser’s Bliss in Auctions with Price Externality," Games, MDPI, Open Access Journal, vol. 6(3), pages 1-23, July.
    2. Michael Scholz & Markus Franz & Oliver Hinz, 2016. "The Ambiguous Identifier Clustering Technique," Electronic Markets, Springer;IIM University of St. Gallen, vol. 26(2), pages 143-156, May.
    3. Robert Zeithammer & Christopher Adams, 2010. "Rejoinder--Causes and Implications of Some Bidders Not Conforming to the Sealed-Bid Abstraction," Marketing Science, INFORMS, vol. 29(6), pages 998-1000, 11-12.

    More about this item

    Keywords

    auctions; online; learning; bidding;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:29:y:2010:i:6:p:988-993. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc). General contact details of provider: http://edirc.repec.org/data/inforea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.