IDEAS home Printed from https://ideas.repec.org/a/ibn/masjnl/v9y2015i5p25.html
   My bibliography  Save this article

The FMEA-Risk Analysis of Oil and Gas Process Facilities with Hazard Assessment Based on Fuzzy Logic

Author

Listed:
  • Eduard Petrovskiy
  • Fedor Buryukin
  • Vladimir Bukhtiyarov
  • Irina Savich
  • Mariya Gagina

Abstract

The paper considers the practical application of the Failure Mode and Effect Analysis method to assess the operational reliability of the oil refineries' equipment, which is a pressing problem for the oil-producing regions and countries. Oil refineries are hazardous industries, and therefore the construction, adaptation and testing of effective risk analysis methods is an important task. The solution to this problem provides the basis for corrective management action to reduce the probability of damage from accidents to humans and the environment. The method is based on the detection probability of inconsistencies and involves elaborate ways to increase the reliability and security through risk analysis method. The approbation is performed for the Failure Mode and Effect Analysis method to assess the reliability based on the detection of defects typical to oil and gas facilities. The basic steps of the Failure Mode and Effect Analysis method are provided and show the possible options for scaling required to obtain quantitative risk assessments. The result was the quantitative risk assessment for oil transportation facilities. The supporting method for quantifying risk in emergency situations on the equipment are encouraged to use a fuzzy logic approach. The paper describes the main steps of this approach shows its applicability and the possibility of formation for quantitative estimates of the hazards of various defects in the equipment.

Suggested Citation

  • Eduard Petrovskiy & Fedor Buryukin & Vladimir Bukhtiyarov & Irina Savich & Mariya Gagina, 2015. "The FMEA-Risk Analysis of Oil and Gas Process Facilities with Hazard Assessment Based on Fuzzy Logic," Modern Applied Science, Canadian Center of Science and Education, vol. 9(5), pages 1-25, May.
  • Handle: RePEc:ibn:masjnl:v:9:y:2015:i:5:p:25
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/mas/article/download/46749/25193
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/mas/article/view/46749
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Burgherr, Peter & Eckle, Petrissa & Hirschberg, Stefan, 2012. "Comparative assessment of severe accident risks in the coal, oil and natural gas chains," Reliability Engineering and System Safety, Elsevier, vol. 105(C), pages 97-103.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Puxin Liu, 2023. "An assessment of financial mechanisms for green financial recovery and climate change mitigation: the case of China," Economic Change and Restructuring, Springer, vol. 56(3), pages 1567-1584, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moahamed Younes El Bouti & Mohamed Allouch, 2018. "Analysis of 801 Work-Related Incidents in the Oil and Gas Industry That Occurred Between 2014 and 2016 in 6 Regions," Energy and Environment Research, Canadian Center of Science and Education, vol. 8(1), pages 1-32, June.
    2. Tomasz Jałowiec & Henryk Wojtaszek & Ireneusz Miciuła, 2021. "Green Energy Management through the Implementation of RES in the EU. Analysis of the Opinions of Poland and Germany," Energies, MDPI, vol. 14(23), pages 1-33, December.
    3. Burgherr, Peter & Hirschberg, Stefan, 2014. "Comparative risk assessment of severe accidents in the energy sector," Energy Policy, Elsevier, vol. 74(S1), pages 45-56.
    4. Azadeh Maroufmashat & Michael Fowler, 2017. "Transition of Future Energy System Infrastructure; through Power-to-Gas Pathways," Energies, MDPI, vol. 10(8), pages 1-22, July.
    5. Shiyu Chen & Wei Wang & Enrico Zio, 2021. "A Simulation-Based Multi-Objective Optimization Framework for the Production Planning in Energy Supply Chains," Energies, MDPI, vol. 14(9), pages 1-27, May.
    6. Florentina Paraschiv & Dima Mohamad, 2020. "The Nuclear Power Dilemma—Between Perception and Reality," Energies, MDPI, vol. 13(22), pages 1-19, November.
    7. Tong, Ruipeng & Yang, Xiaoyi & Li, Hongwei & Li, Jianfei, 2019. "Dual process management of coal miners’ unsafe behaviour in the Chinese context: Evidence from a meta-analysis and inspired by the JD-R model," Resources Policy, Elsevier, vol. 62(C), pages 205-217.
    8. Sovacool, Benjamin K. & Kryman, Matthew & Laine, Emily, 2015. "Profiling technological failure and disaster in the energy sector: A comparative analysis of historical energy accidents," Energy, Elsevier, vol. 90(P2), pages 2016-2027.
    9. Hughes, Larry & de Jong, Moniek & Wang, Xiao Qin, 2016. "A generic method for analyzing the risks to energy systems," Applied Energy, Elsevier, vol. 180(C), pages 895-908.
    10. Spencer Wheatley & Benjamin Sovacool & Didier Sornette, 2017. "Of Disasters and Dragon Kings: A Statistical Analysis of Nuclear Power Incidents and Accidents," Risk Analysis, John Wiley & Sons, vol. 37(1), pages 99-115, January.
    11. Silva, Joaquim F. & Jacinto, Celeste, 2012. "Finding occupational accident patterns in the extractive industry using a systematic data mining approach," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 108-122.
    12. Kumar, Sourabh & Kumar Barua, Mukesh, 2022. "Modeling and investigating the interaction among risk factors of the sustainable petroleum supply chain," Resources Policy, Elsevier, vol. 79(C).
    13. Gibon, Thomas & Arvesen, Anders & Hertwich, Edgar G., 2017. "Life cycle assessment demonstrates environmental co-benefits and trade-offs of low-carbon electricity supply options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1283-1290.
    14. Corey Young, 2023. "Between a Rock and a Hard Place: Governing Unconventional Natural Gas at the Local Level in the United States," Sustainability, MDPI, vol. 15(7), pages 1-14, March.
    15. Medeiros, Cristina Pereira & da Silva, Lucas Borges Leal & Alencar, Marcelo Hazin & de Almeida, Adiel Teixeira, 2021. "A new method for managing multidimensional risks in Natural Gas Pipelines based on non-Expected Utility," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    16. Hirschberg, Stefan & Bauer, Christian & Burgherr, Peter & Cazzoli, Eric & Heck, Thomas & Spada, Matteo & Treyer, Karin, 2016. "Health effects of technologies for power generation: Contributions from normal operation, severe accidents and terrorist threat," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 373-387.
    17. Marco Cinelli & Matteo Spada & Miłosz Kadziński & Grzegorz Miebs & Peter Burgherr, 2019. "Advancing Hazard Assessment of Energy Accidents in the Natural Gas Sector with Rough Set Theory and Decision Rules," Energies, MDPI, vol. 12(21), pages 1-17, November.
    18. Juan Durango-Cordero & Mehdi Saqalli & Christophe Laplanche & Marine Locquet & Arnaud Elger, 2018. "Spatial Analysis of Accidental Oil Spills Using Heterogeneous Data: A Case Study from the North-Eastern Ecuadorian Amazon," Sustainability, MDPI, vol. 10(12), pages 1-13, December.
    19. Spada, Matteo & Paraschiv, Florentina & Burgherr, Peter, 2018. "A comparison of risk measures for accidents in the energy sector and their implications on decision-making strategies," Energy, Elsevier, vol. 154(C), pages 277-288.
    20. Kamenopoulos, Sotiris N. & Tsoutsos, Theocharis, 2015. "Assessment of the safe operation and maintenance of photovoltaic systems," Energy, Elsevier, vol. 93(P2), pages 1633-1638.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:masjnl:v:9:y:2015:i:5:p:25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.