IDEAS home Printed from https://ideas.repec.org/a/hig/fsight/v9y2015i4p32-41.html
   My bibliography  Save this article

Prospects for Telemedicine Adoption: Prognostic Modeling as Exemplified by Rural Areas of USA

Author

Listed:
  • Jisun Kim

    (Portland State University, US)

  • Hamad Alanazi

    (Portland State University, US)

  • Tugrul Daim

    (Portland State University, US)

Abstract

Experts predict that in the majority of countries state healthcare expenditures will continue to rise. Usage of telemedicine applications – the use of information and communications technologies (ICT) in order to provide clinical health care at a distance – will help optimize the costs of healthcare in the long-term. The main advantages of telemedicine include reducing the number of doctor’s errors, saving both patients and physicians time, and improving the efficiency of healthcare organizations. It also ensures timely and quality services for large segments of the population living in remote territories with difficult socio-economic conditions, particularly rural areas. The paper forecasts the adoption rate of telemedicine in US rural areas by using the Bass Model. The model is considered quite versatile as it can be used across a wide range of products and services. Nevertheless, the Bass model has some limitations related to how it estimates missing data. Calculation errors can be related to numerous barriers, which affect the adoption rate of telemedicine. These barriers include: high costs of production and exploitation of hi-tech equipment; physicians insufficiently prepared to adopt and use the latest technologies in their daily work; as well as possible concerns of patients about the quality of remote healthcare service.

Suggested Citation

  • Jisun Kim & Hamad Alanazi & Tugrul Daim, 2015. "Prospects for Telemedicine Adoption: Prognostic Modeling as Exemplified by Rural Areas of USA," Foresight and STI Governance (Foresight-Russia till No. 3/2015), National Research University Higher School of Economics, vol. 9(4), pages 32-41.
  • Handle: RePEc:hig:fsight:v:9:y:2015:i:4:p:32-41
    as

    Download full text from publisher

    File URL: http://foresight-journal.hse.ru/data/2015/12/23/1132792383/3-Telemedicine-32-41.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Frank M. Bass, 2004. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 50(12_supple), pages 1825-1832, December.
    2. Frank M. Bass & Trichy V. Krishnan & Dipak C. Jain, 1994. "Why the Bass Model Fits without Decision Variables," Marketing Science, INFORMS, vol. 13(3), pages 203-223.
    3. Frank M. Bass, 2004. "Comments on "A New Product Growth for Model Consumer Durables The Bass Model"," Management Science, INFORMS, vol. 50(12_supple), pages 1833-1840, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Najmeh Madadi & Azanizawati Ma’aram & Kuan Yew Wong, 2017. "A simulation-based product diffusion forecasting method using geometric Brownian motion and spline interpolation," Cogent Business & Management, Taylor & Francis Journals, vol. 4(1), pages 1300992-130, January.
    2. Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 190-203.
    3. Han, Zhongya & Tang, Zhongjun & He, Bo, 2022. "Improved Bass model for predicting the popularity of product information posted on microblogs," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    4. Massiani, Jérôme & Gohs, Andreas, 2015. "The choice of Bass model coefficients to forecast diffusion for innovative products: An empirical investigation for new automotive technologies," Research in Transportation Economics, Elsevier, vol. 50(C), pages 17-28.
    5. Chumnumpan, Pattarin & Shi, Xiaohui, 2019. "Understanding new products’ market performance using Google Trends," Australasian marketing journal, Elsevier, vol. 27(2), pages 91-103.
    6. Simpson, Jesse R. & Mishra, Sabyasachee & Talebian, Ahmadreza & Golias, Mihalis M., 2019. "An estimation of the future adoption rate of autonomous trucks by freight organizations," Research in Transportation Economics, Elsevier, vol. 76(C).
    7. Xiaoyu Li & Jiahong Yuan & Yan Shi & Tianteng Wang & Xiangpei Hu & Felix Tung Sun Chan & Junhu Ruan, 2020. "An extended Bass Model on consumer quantity of B2C commerce platforms," Electronic Commerce Research, Springer, vol. 20(3), pages 609-628, September.
    8. Ramírez-Hassan, Andrés & Montoya-Blandón, Santiago, 2020. "Forecasting from others’ experience: Bayesian estimation of the generalized Bass model," International Journal of Forecasting, Elsevier, vol. 36(2), pages 442-465.
    9. Collins, Matthew & Curtis, John, 2017. "Advertising and investment spillovers in the diffusion of residential energy efficiency renovations," Papers WP569, Economic and Social Research Institute (ESRI).
    10. Cambier, Adrien & Chardy, Matthieu & Figueiredo, Rosa & Ouorou, Adam & Poss, Michael, 2022. "Optimizing subscriber migrations for a telecommunication operator in uncertain context," European Journal of Operational Research, Elsevier, vol. 298(1), pages 308-321.
    11. Bernd Frick & Franziska Prockl, 2018. "Information Precision In Online Communities: Player Valuations On Www.Transfermarkt.De," Working Papers Dissertations 37, Paderborn University, Faculty of Business Administration and Economics.
    12. Davide Crapis & Bar Ifrach & Costis Maglaras & Marco Scarsini, 2017. "Monopoly Pricing in the Presence of Social Learning," Management Science, INFORMS, vol. 63(11), pages 3586-3608, November.
    13. Mike W. Peng, 2019. "Global competition and diffusion of the “A” list," Frontiers of Business Research in China, Springer, vol. 13(1), pages 1-23, December.
    14. Lefeng, Shi & Shengnan, Lv & Chunxiu, Liu & Yue, Zhou & Cipcigan, Liana & Acker, Thomas L., 2020. "A framework for electric vehicle power supply chain development," Utilities Policy, Elsevier, vol. 64(C).
    15. Stefan N. Groesser & Niklas Jovy, 2016. "Business model analysis using computational modeling: a strategy tool for exploration and decision-making," Journal of Management Control: Zeitschrift für Planung und Unternehmenssteuerung, Springer, vol. 27(1), pages 61-88, February.
    16. Ad van den Oord & Arjen van Witteloostuijn, 2018. "A multi-level model of emerging technology: An empirical study of the evolution of biotechnology from 1976 to 2003," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-27, May.
    17. Tunstall, Thomas, 2015. "Iterative Bass Model forecasts for unconventional oil production in the Eagle Ford Shale," Energy, Elsevier, vol. 93(P1), pages 580-588.
    18. Lixin Zhou & Jie Lin & Yanfeng Li & Zhenyu Zhang, 2020. "Innovation Diffusion of Mobile Applications in Social Networks: A Multi-Agent System," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    19. Yogesh V. Joshi & David J. Reibstein & Z. John Zhang, 2009. "Optimal Entry Timing in Markets with Social Influence," Management Science, INFORMS, vol. 55(6), pages 926-939, June.
    20. Amini, Mehdi & Li, Haitao, 2011. "Supply chain configuration for diffusion of new products: An integrated optimization approach," Omega, Elsevier, vol. 39(3), pages 313-322, June.

    More about this item

    Keywords

    telemedicine; remote medical services; information and communication technologies (ICT); healthcare expenditures; the Bass model;
    All these keywords.

    JEL classification:

    • I18 - Health, Education, and Welfare - - Health - - - Government Policy; Regulation; Public Health
    • I19 - Health, Education, and Welfare - - Health - - - Other
    • O39 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hig:fsight:v:9:y:2015:i:4:p:32-41. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nataliya Gavrilicheva or Mikhail Salazkin (email available below). General contact details of provider: https://edirc.repec.org/data/hsecoru.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.