IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i12p1220-d83656.html
   My bibliography  Save this article

Feasibility Study on Parametric Optimization of Daylighting in Building Shading Design

Author

Listed:
  • Kyung Sun Lee

    (School of Architecture, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul 02481, Korea)

  • Ki Jun Han

    (Digit, 12, Dongmak-ro 2-gil, Mapo-gu, Seoul 04071, Korea)

  • Jae Wook Lee

    (School of Architecture, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA)

Abstract

Shading design to optimize daylighting is in many cases achieved through a designer’s sense based on prior knowledge and experience. However, computer-assisted parametric techniques can be utilized for daylighting design in an easy and much more accurate way. If such tools are utilized in the early stages of a project, this can be more effective for sustainable design. This study compares the conventional approach, which depends on a designer’s sense of judgment to create optimal indoor lighting conditions by adjusting louver shapes and window patterns, with the approach of making use of genetic algorithms. Ultimately, this study discusses the advantages and disadvantages of those two approaches. As a starting point, 30 designers were instructed to design a facade by manually adjusting several input parameters of shading. The parameters govern six kinds of louver and window types, with the ratio of analysis grid surface area achieving a daylight factor of 2%–5%. Secondly, input parameters were automatically created by using genetic algorithm optimization methods to find optimal fitness data. As a conclusion, conventional approaches result in a strong disposition toward designing certain shading types represented by linear relationships. Computer-assisted daylight simulation can help influence this, being effective when dealing with a large amount of data and non-linear relationships.

Suggested Citation

  • Kyung Sun Lee & Ki Jun Han & Jae Wook Lee, 2016. "Feasibility Study on Parametric Optimization of Daylighting in Building Shading Design," Sustainability, MDPI, vol. 8(12), pages 1-16, November.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:12:p:1220-:d:83656
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/12/1220/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/12/1220/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhammad Arkam C. Munaaim & Karam M. Al-Obaidi & Mohd Rodzi Ismail & Abdul Malek Abdul Rahman, 2014. "Empirical Evaluation of the Effect of Heat Gain from Fiber Optic Daylighting System on Tropical Building Interiors," Sustainability, MDPI, vol. 6(12), pages 1-13, December.
    2. Fabrizio Ascione & Nicola Bianco & Rosa Francesca De Masi & Gerardo Maria Mauro & Giuseppe Peter Vanoli, 2015. "Design of the Building Envelope: A Novel Multi-Objective Approach for the Optimization of Energy Performance and Thermal Comfort," Sustainability, MDPI, vol. 7(8), pages 1-28, August.
    3. Richard Fiifi Turkson & Fuwu Yan & Mohamed Kamal Ahmed Ali & Bo Liu & Jie Hu, 2016. "Modeling and Multi-Objective Optimization of Engine Performance and Hydrocarbon Emissions via the Use of a Computer Aided Engineering Code and the NSGA-II Genetic Algorithm," Sustainability, MDPI, vol. 8(1), pages 1-15, January.
    4. María Beatriz Piderit Moreno & Constanza Yañez Labarca, 2015. "Methodology for Assessing Daylighting Design Strategies in Classroom with a Climate-Based Method," Sustainability, MDPI, vol. 7(1), pages 1-18, January.
    5. Chang Heon Cheong & Taeyeon Kim & Seung-Bok Leigh, 2014. "Thermal and Daylighting Performance of Energy-Efficient Windows in Highly Glazed Residential Buildings: Case Study in Korea," Sustainability, MDPI, vol. 6(10), pages 1-23, October.
    6. Galatioto, A. & Beccali, M., 2016. "Aspects and issues of daylighting assessment: A review study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 852-860.
    7. Deal, Brian & Schunk, Daniel, 2004. "Spatial dynamic modeling and urban land use transformation: a simulation approach to assessing the costs of urban sprawl," Ecological Economics, Elsevier, vol. 51(1-2), pages 79-95, November.
    8. Heidar Sadeghzadeh & Mehdi Aliehyaei & Marc A. Rosen, 2015. "Optimization of a Finned Shell and Tube Heat Exchanger Using a Multi-Objective Optimization Genetic Algorithm," Sustainability, MDPI, vol. 7(9), pages 1-17, August.
    9. Lee, J.W. & Jung, H.J. & Park, J.Y. & Lee, J.B. & Yoon, Y., 2013. "Optimization of building window system in Asian regions by analyzing solar heat gain and daylighting elements," Renewable Energy, Elsevier, vol. 50(C), pages 522-531.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nari Yoon & Mary Ann Piette & Jung Min Han & Wentao Wu & Ali Malkawi, 2020. "Optimization of Window Positions for Wind-Driven Natural Ventilation Performance," Energies, MDPI, vol. 13(10), pages 1-25, May.
    2. Sewon Lee & Kyung Sun Lee, 2019. "A Study on the Improvement of the Evaluation Scale of Discomfort Glare in Educational Facilities," Energies, MDPI, vol. 12(17), pages 1-21, August.
    3. Fabrizio M. Amoruso & Udo Dietrich & Thorsten Schuetze, 2019. "Integrated BIM-Parametric Workflow-Based Analysis of Daylight Improvement for Sustainable Renovation of an Exemplary Apartment in Seoul, Korea," Sustainability, MDPI, vol. 11(9), pages 1-29, May.
    4. Dušan Katunský & Erika Dolníková & Bystrík Dolník, 2018. "Daytime Lighting Assessment in Textile Factories Using Connected Windows in Slovakia: A Case Study," Sustainability, MDPI, vol. 10(3), pages 1-20, February.
    5. In-Tae Kim & Yu-Sin Kim & Meeryoung Cho & Hyeonggon Nam & Anseop Choi & Taeyon Hwang, 2019. "High-Performance Accuracy of Daylight-Responsive Dimming Systems with Illuminance by Distant Luminaires for Energy-Saving Buildings," Energies, MDPI, vol. 12(4), pages 1-21, February.
    6. Kyung Sun Lee & Ki Jun Han & Jae Wook Lee, 2017. "The Impact of Shading Type and Azimuth Orientation on the Daylighting in a Classroom–Focusing on Effectiveness of Façade Shading, Comparing the Results of DA and UDI," Energies, MDPI, vol. 10(5), pages 1-20, May.
    7. In-Tae Kim & Yu-Sin Kim & Hyeonggon Nam & Taeyon Hwang, 2018. "Advanced Dimming Control Algorithm for Sustainable Buildings by Daylight Responsive Dimming System," Sustainability, MDPI, vol. 10(11), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Israr Ahmed & Jamal Umer & Abdullah Altamimi & Ahmad Raza Khan Rana & Zafar A. Khan & Muhammad Imran & Muhammad Awais & Saeed Alyami, 2023. "A Critical Analysis of the Energy Requirements of a Commercial Building Based on Various Types of Glass Insulations," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    2. Xiaofeng Li & Vladimir Strezov, 2015. "Energy and Greenhouse Gas Emission Assessment of Conventional and Solar Assisted Air Conditioning Systems," Sustainability, MDPI, vol. 7(11), pages 1-19, November.
    3. Jaewook Lee & Jeongsu Park & Hyung-Jo Jung & Jiyoung Park, 2017. "Renewable Energy Potential by the Application of a Building Integrated Photovoltaic and Wind Turbine System in Global Urban Areas," Energies, MDPI, vol. 10(12), pages 1-20, December.
    4. Bayoumi, Mohannad & Fink, Dietrich, 2014. "Maximizing the performance of an energy generating façade in terms of energy saving strategies," Renewable Energy, Elsevier, vol. 64(C), pages 294-305.
    5. Giacomo Chiesa & Andrea Acquaviva & Mario Grosso & Lorenzo Bottaccioli & Maurizio Floridia & Edoardo Pristeri & Edoardo Maria Sanna, 2019. "Parametric Optimization of Window-to-Wall Ratio for Passive Buildings Adopting A Scripting Methodology to Dynamic-Energy Simulation," Sustainability, MDPI, vol. 11(11), pages 1-30, May.
    6. Ferenc Kalmár & Tünde Kalmár, 2020. "Thermal Comfort Aspects of Solar Gains during the Heating Season," Energies, MDPI, vol. 13(7), pages 1-15, April.
    7. Ascione, Fabrizio & De Masi, Rosa Francesca & de Rossi, Filippo & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2016. "Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study," Applied Energy, Elsevier, vol. 183(C), pages 938-957.
    8. Karolis Banionis & Jurga Kumžienė & Arūnas Burlingis & Juozas Ramanauskas & Valdas Paukštys, 2021. "The Changes in Thermal Transmittance of Window Insulating Glass Units Depending on Outdoor Temperatures in Cold Climate Countries," Energies, MDPI, vol. 14(6), pages 1-22, March.
    9. Halil Alibaba, 2016. "Determination of Optimum Window to External Wall Ratio for Offices in a Hot and Humid Climate," Sustainability, MDPI, vol. 8(2), pages 1-21, February.
    10. Salvati, Luca & Sateriano, Adele & Grigoriadis, Efstathios & Carlucci, Margherita, 2017. "New wine in old bottles: The (changing) socioeconomic attributes of sprawl during building boom and stagnation," Ecological Economics, Elsevier, vol. 131(C), pages 361-372.
    11. Yunsong Han & Hong Yu & Cheng Sun, 2017. "Simulation-Based Multiobjective Optimization of Timber-Glass Residential Buildings in Severe Cold Regions," Sustainability, MDPI, vol. 9(12), pages 1-18, December.
    12. Anja Hansen & Jörn Budde & Annette Prochnow, 2016. "Resource Usage Strategies and Trade-Offs between Cropland Demand, Fossil Fuel Consumption, and Greenhouse Gas Emissions—Building Insulation as an Example," Sustainability, MDPI, vol. 8(7), pages 1-24, June.
    13. Zimu Jia & Long Chen & Jingjia Chen & Guowei Lyu & Ding Zhou & Ying Long, 2020. "Urban modeling for streets using vector cellular automata: Framework and its application in Beijing," Environment and Planning B, , vol. 47(8), pages 1418-1439, October.
    14. Xin Zhang & Jinghu Pan, 2021. "Spatiotemporal Pattern and Driving Factors of Urban Sprawl in China," Land, MDPI, vol. 10(11), pages 1-16, November.
    15. Merkebe Getachew Demissie & Lina Kattan, 2022. "Understanding the temporal and spatial interactions between transit ridership and urban land-use patterns: an exploratory study," Public Transport, Springer, vol. 14(2), pages 385-417, June.
    16. Zhang, Shicong & Jiang, Yiqiang & Xu, Wei & Li, Huai & Yu, Zhen, 2016. "Operating performance in cooling mode of a ground source heat pump of a nearly-zero energy building in the cold region of China," Renewable Energy, Elsevier, vol. 87(P3), pages 1045-1052.
    17. Wijeratne, W.M. Pabasara Upalakshi & Samarasinghalage, Tharushi Imalka & Yang, Rebecca Jing & Wakefield, Ron, 2022. "Multi-objective optimisation for building integrated photovoltaics (BIPV) roof projects in early design phase," Applied Energy, Elsevier, vol. 309(C).
    18. García Kerdan, Iván & Raslan, Rokia & Ruyssevelt, Paul & Morillón Gálvez, David, 2017. "A comparison of an energy/economic-based against an exergoeconomic-based multi-objective optimisation for low carbon building energy design," Energy, Elsevier, vol. 128(C), pages 244-263.
    19. Haibo Yu & Hui Zhang & Xiaolin Han & Ningcheng Gao & Zikang Ke & Junle Yan, 2023. "An Empirical Study of a Passive Exterior Window for an Office Building in the Context of Ultra-Low Energy," Sustainability, MDPI, vol. 15(17), pages 1-23, September.
    20. Eda Ustaoglu & Brendan Williams & Laura O. Petrov & Harutyun Shahumyan & Hedwig Van Delden, 2017. "Developing and Assessing Alternative Land-Use Scenarios from the MOLAND Model: A Scenario-Based Impact Analysis Approach for the Evaluation of Rapid Rail Provisions and Urban Development in the Greate," Sustainability, MDPI, vol. 10(1), pages 1-34, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:12:p:1220-:d:83656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.