IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i7p613-d73051.html
   My bibliography  Save this article

Resource Usage Strategies and Trade-Offs between Cropland Demand, Fossil Fuel Consumption, and Greenhouse Gas Emissions—Building Insulation as an Example

Author

Listed:
  • Anja Hansen

    (Leibniz Institute for Agricultural Engineering Potsdam–Bornim, Max–Eyth–Allee 100, 14469 Potsdam, Germany)

  • Jörn Budde

    (Leibniz Institute for Agricultural Engineering Potsdam–Bornim, Max–Eyth–Allee 100, 14469 Potsdam, Germany)

  • Annette Prochnow

    (Leibniz Institute for Agricultural Engineering Potsdam–Bornim, Max–Eyth–Allee 100, 14469 Potsdam, Germany
    Faculty of Life Sciences, Humboldt–Universität zu Berlin, Invalidenstr. 42, 10115 Berlin, Germany)

Abstract

Bioresources are used in different production systems as materials as well as energy carriers. The same is true for fossil fuel resources. This study explored whether preferential resource usages exist, using a building insulation system as an example, with regard to the following sustainability criteria: climate impact, land, and fossil fuel demand. We considered the complete life cycle in a life cycle assessment-based approach. The criteria were compared for two strategies: one used natural fibers as material and generated production energies from fossil fuels; the other generated production energies from bioenergy carriers and transformed fossil resources into the insulation material. Both strategies finally yielded the same insulation effect. Hence, the energy demand for heating the building was ignored. None of the strategies operated best in all three criteria: While cropland demand was lower in the bioenergy than in the biomaterial system, its fossil fuel demand was higher. Net contribution to climate change was in the same range for both strategies if we considered no indirect changes in land use. Provided that effective recycling concepts for fossil-derived insulations are in place, using bioresources for energy generation was identified as a promising way to mitigate climate change along with efficient resource use.

Suggested Citation

  • Anja Hansen & Jörn Budde & Annette Prochnow, 2016. "Resource Usage Strategies and Trade-Offs between Cropland Demand, Fossil Fuel Consumption, and Greenhouse Gas Emissions—Building Insulation as an Example," Sustainability, MDPI, vol. 8(7), pages 1-24, June.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:7:p:613-:d:73051
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/7/613/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/7/613/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kauffman, Nathan S. & Hayes, Dermot J., 2013. "The trade-off between bioenergy and emissions with land constraints," Energy Policy, Elsevier, vol. 54(C), pages 300-310.
    2. Julian Canto-Perello & Maria P. Martinez-Garcia & Jorge Curiel-Esparza & Manuel Martin-Utrillas, 2015. "Implementing Sustainability Criteria for Selecting a Roof Assembly Typology in Medium Span Buildings," Sustainability, MDPI, vol. 7(6), pages 1-18, May.
    3. Wolf, J. & Bindraban, P. S. & Luijten, J. C. & Vleeshouwers, L. M., 2003. "Exploratory study on the land area required for global food supply and the potential global production of bioenergy," Agricultural Systems, Elsevier, vol. 76(3), pages 841-861, June.
    4. Fabrizio Ascione & Nicola Bianco & Rosa Francesca De Masi & Gerardo Maria Mauro & Giuseppe Peter Vanoli, 2015. "Design of the Building Envelope: A Novel Multi-Objective Approach for the Optimization of Energy Performance and Thermal Comfort," Sustainability, MDPI, vol. 7(8), pages 1-28, August.
    5. Antti Kilpeläinen & Harri Strandman & Seppo Kellomäki & Jyri Seppälä, 2014. "Assessing the net atmospheric impacts of wood production and utilization," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(7), pages 955-968, October.
    6. Ingrao, Carlo & Lo Giudice, Agata & Bacenetti, Jacopo & Tricase, Caterina & Dotelli, Giovanni & Fiala, Marco & Siracusa, Valentina & Mbohwa, Charles, 2015. "Energy and environmental assessment of industrial hemp for building applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 29-42.
    7. Martin Weiss & Juliane Haufe & Michael Carus & Miguel Brandão & Stefan Bringezu & Barbara Hermann & Martin K. Patel, 2012. "A Review of the Environmental Impacts of Biobased Materials," Journal of Industrial Ecology, Yale University, vol. 16(s1), pages 169-181, April.
    8. Michael H. Mazor & John D. Mutton & David A. M. Russell & Gregory A. Keoleian, 2011. "Life Cycle Greenhouse Gas Emissions Reduction From Rigid Thermal Insulation Use in Buildings," Journal of Industrial Ecology, Yale University, vol. 15(2), pages 284-299, April.
    9. Catherine Benoit-Norris & Deana Aulisio Cavan & Gregory Norris, 2012. "Identifying Social Impacts in Product Supply Chains:Overview and Application of the Social Hotspot Database," Sustainability, MDPI, vol. 4(9), pages 1-20, August.
    10. Veronika Dornburg & Iris Lewandowski & Martin Patel, 2003. "Comparing the Land Requirements, Energy Savings, and Greenhouse Gas Emissions Reduction of Biobased Polymers and Bioenergy," Journal of Industrial Ecology, Yale University, vol. 7(3‐4), pages 93-116, July.
    11. Alvarenga, Rodrigo A.F. & Dewulf, Jo, 2013. "Plastic vs. fuel: Which use of the Brazilian ethanol can bring more environmental gains?," Renewable Energy, Elsevier, vol. 59(C), pages 49-52.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao Wang & Pen-Chi Chiang & Yanpeng Cai & Chunhui Li & Xuan Wang & Tse-Lun Chen & Shiming Wei & Qian Huang, 2018. "Application of Wall and Insulation Materials on Green Building: A Review," Sustainability, MDPI, vol. 10(9), pages 1-21, September.
    2. Anja Hansen & Jörn Budde & Yusuf Nadi Karatay & Annette Prochnow, 2016. "CUDe —Carbon Utilization Degree as an Indicator for Sustainable Biomass Use," Sustainability, MDPI, vol. 8(10), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin Ouk Choi & Ankit Bhatla & Christopher M. Stoppel & Jennifer S. Shane, 2015. "LEED Credit Review System and Optimization Model for Pursuing LEED Certification," Sustainability, MDPI, vol. 7(10), pages 1-27, September.
    2. Broeren, Martijn L.M. & Kuling, Lody & Worrell, Ernst & Shen, Li, 2017. "Environmental impact assessment of six starch plastics focusing on wastewater-derived starch and additives," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 246-255.
    3. Emanuele Bonamente & Franco Cotana, 2015. "Carbon and Energy Footprints of Prefabricated Industrial Buildings: A Systematic Life Cycle Assessment Analysis," Energies, MDPI, vol. 8(11), pages 1-17, November.
    4. Datu Buyung Agusdinata & Wenjuan Liu & Sinta Sulistyo & Philippe LeBillon & Je'anne Wegner, 2023. "Evaluating sustainability impacts of critical mineral extractions: Integration of life cycle sustainability assessment and SDGs frameworks," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 746-759, June.
    5. Jianing Wei & Jixiao Cui & Yinan Xu & Jinna Li & Xinyu Lei & Wangsheng Gao & Yuanquan Chen, 2022. "Social Life Cycle Assessment of Major Staple Grain Crops in China," Agriculture, MDPI, vol. 12(4), pages 1-22, April.
    6. Ascione, Fabrizio & De Masi, Rosa Francesca & de Rossi, Filippo & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2016. "Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study," Applied Energy, Elsevier, vol. 183(C), pages 938-957.
    7. Vibeke Grupe Larsen & Valentina Antoniucci & Nicola Tollin & Peter Andreas Sattrup & Krister Jens & Morten Birkved & Tine Holmboe & Giuliano Marella, 2023. "A Methodological Framework to Foster Social Value Creation in Architectural Practice," Sustainability, MDPI, vol. 15(3), pages 1-25, January.
    8. Sheikh Adil Edrisi & Vishal Tripathi & Purushothaman Chirakkuzhyil Abhilash, 2019. "Performance Analysis and Soil Quality Indexing for Dalbergia sissoo Roxb. Grown in Marginal and Degraded Land of Eastern Uttar Pradesh, India," Land, MDPI, vol. 8(4), pages 1-19, April.
    9. Ming Tang & Huchang Liao & Zhengjun Wan & Enrique Herrera-Viedma & Marc A. Rosen, 2018. "Ten Years of Sustainability (2009 to 2018): A Bibliometric Overview," Sustainability, MDPI, vol. 10(5), pages 1-21, May.
    10. Harkaitz García & Mikel Zubizarreta & Jesús Cuadrado & Juan Luis Osa, 2018. "Sustainability Improvement in the Design of Lightweight Roofs: A New Prototype of Hybrid Steel and Wood Purlins," Sustainability, MDPI, vol. 11(1), pages 1-17, December.
    11. Weizhong Su & Gaobin Ye, 2014. "Differences of Soil Fertility in Farmland Occupation and Supplement Areas in the Taihu Lake Watershed during 1985–2010," IJERPH, MDPI, vol. 11(6), pages 1-15, May.
    12. Alexander Barke & Walter Cistjakov & Dominik Steckermeier & Christian Thies & Jan‐Linus Popien & Peter Michalowski & Sofia Pinheiro Melo & Felipe Cerdas & Christoph Herrmann & Ulrike Krewer & Arno Kwa, 2023. "Green batteries for clean skies: Sustainability assessment of lithium‐sulfur all‐solid‐state batteries for electric aircraft," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 795-810, June.
    13. Gigliola Ausiello & Luca Di Girolamo & Antonio Marano, 2019. "Sustainable Requalification: Hemp, Raw Earth, Sun, and Wind for Energy Strategies in a Case Study in Naples, Italy," Sustainability, MDPI, vol. 11(21), pages 1-13, November.
    14. Amy Fitzgerald & Will Proud & Ali Kandemir & Richard J. Murphy & David A. Jesson & Richard S. Trask & Ian Hamerton & Marco L. Longana, 2021. "A Life Cycle Engineering Perspective on Biocomposites as a Solution for a Sustainable Recovery," Sustainability, MDPI, vol. 13(3), pages 1-25, January.
    15. Wijeratne, W.M. Pabasara Upalakshi & Samarasinghalage, Tharushi Imalka & Yang, Rebecca Jing & Wakefield, Ron, 2022. "Multi-objective optimisation for building integrated photovoltaics (BIPV) roof projects in early design phase," Applied Energy, Elsevier, vol. 309(C).
    16. García Kerdan, Iván & Raslan, Rokia & Ruyssevelt, Paul & Morillón Gálvez, David, 2017. "A comparison of an energy/economic-based against an exergoeconomic-based multi-objective optimisation for low carbon building energy design," Energy, Elsevier, vol. 128(C), pages 244-263.
    17. Gaëlle Petit & Caroline C. Sablayrolles & Gwenola Yannou-Le Bris, 2018. "Combining eco-social and environmental indicators to assess the sustainability performance of a food value chain: A case study," Post-Print hal-01813496, HAL.
    18. Teodoro Semeraro & Roberta Aretano & Amilcare Barca & Alessandro Pomes & Cecilia Del Giudice & Elisa Gatto & Marcello Lenucci & Riccardo Buccolieri & Rohinton Emmanuel & Zhi Gao & Alessandra Scognamig, 2020. "A Conceptual Framework to Design Green Infrastructure: Ecosystem Services as an Opportunity for Creating Shared Value in Ground Photovoltaic Systems," Land, MDPI, vol. 9(8), pages 1-28, July.
    19. Sarah Schmidt & David Laner, 2023. "The environmental performance of plastic packaging waste management in Germany: Current and future key factors," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1447-1460, December.
    20. Grant Mosey & Brian Deal, 2020. "Multivariate Optimization in Large-Scale Building Problems: An Architectural and Urban Design Approach for Balancing Social, Environmental, and Economic Sustainability," Sustainability, MDPI, vol. 12(23), pages 1-22, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:7:p:613-:d:73051. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.