IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i11p4087-d181231.html
   My bibliography  Save this article

Advanced Dimming Control Algorithm for Sustainable Buildings by Daylight Responsive Dimming System

Author

Listed:
  • In-Tae Kim

    (Lighting Platform Research Center, Korea Photonics Technology Institute (KOPTI), Gwangju 61007, Korea)

  • Yu-Sin Kim

    (Lighting Platform Research Center, Korea Photonics Technology Institute (KOPTI), Gwangju 61007, Korea)

  • Hyeonggon Nam

    (School of Architecture, Chosun University, Gwangju 61452, Korea)

  • Taeyon Hwang

    (School of Architecture, Chosun University, Gwangju 61452, Korea)

Abstract

This study aims to evaluate the accuracy and energy savings of a daylight responsive dimming system (DRDS) when considering the influence of indirect illuminance. In the case of the existing DRDS, during the calibration process of each luminaire, the other luminaires were turned off to detect the illuminance of both the luminaire and the incoming daylight. However, the work plane illuminance under the luminaires was affected by the indirect illuminance from the other luminaires. The final work plane illuminance would thus be higher than the target illuminance during real system operation. To improve the accuracy and energy savings of the DRDS, an improved dimming control algorithm was applied to the DRDS when considering the influence of indirect illuminance. The real-time power consumption and accuracy of the target illuminance of the DRDS when considering the influence of indirect illuminance in a full-scale mock-up was measured and analyzed (for 23 days, from 22 June to 18 July 2018). As a result, the average accuracy of the target illuminance was 98.9% (SD 0.5%), and the average saving in lighting energy was 77%.

Suggested Citation

  • In-Tae Kim & Yu-Sin Kim & Hyeonggon Nam & Taeyon Hwang, 2018. "Advanced Dimming Control Algorithm for Sustainable Buildings by Daylight Responsive Dimming System," Sustainability, MDPI, vol. 10(11), pages 1-15, November.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:11:p:4087-:d:181231
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/11/4087/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/11/4087/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Su-In Yun & Kang-Soo Kim, 2018. "Sky Luminance Measurements Using CCD Camera and Comparisons with Calculation Models for Predicting Indoor Illuminance," Sustainability, MDPI, vol. 10(5), pages 1-29, May.
    2. Vincenzo Costanzo & Gianpiero Evola & Luigi Marletta & Fabiana Pistone Nascone, 2018. "Application of Climate Based Daylight Modelling to the Refurbishment of a School Building in Sicily," Sustainability, MDPI, vol. 10(8), pages 1-19, July.
    3. Kyung Sun Lee & Ki Jun Han & Jae Wook Lee, 2016. "Feasibility Study on Parametric Optimization of Daylighting in Building Shading Design," Sustainability, MDPI, vol. 8(12), pages 1-16, November.
    4. María Beatriz Piderit Moreno & Constanza Yañez Labarca, 2015. "Methodology for Assessing Daylighting Design Strategies in Classroom with a Climate-Based Method," Sustainability, MDPI, vol. 7(1), pages 1-18, January.
    5. Yang Guan & Yonghong Yan, 2016. "Daylighting Design in Classroom Based on Yearly-Graphic Analysis," Sustainability, MDPI, vol. 8(7), pages 1-17, July.
    6. Aniela Kaminska & Andrzej Ożadowicz, 2018. "Lighting Control Including Daylight and Energy Efficiency Improvements Analysis," Energies, MDPI, vol. 11(8), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. In-Tae Kim & Yu-Sin Kim & Meeryoung Cho & Hyeonggon Nam & Anseop Choi & Taeyon Hwang, 2019. "High-Performance Accuracy of Daylight-Responsive Dimming Systems with Illuminance by Distant Luminaires for Energy-Saving Buildings," Energies, MDPI, vol. 12(4), pages 1-21, February.
    2. Erika Dolnikova & Dusan Katunsky & Marian Vertal & Marek Zozulak, 2020. "Influence of Roof Windows Area Changes on the Classroom Indoor Climate in the Attic Space: A Case Study," Sustainability, MDPI, vol. 12(12), pages 1-24, June.
    3. Dušan Katunský & Erika Dolníková & Bystrík Dolník, 2018. "Daytime Lighting Assessment in Textile Factories Using Connected Windows in Slovakia: A Case Study," Sustainability, MDPI, vol. 10(3), pages 1-20, February.
    4. Andrzej Ożadowicz & Gabriela Walczyk, 2023. "Energy Performance and Control Strategy for Dynamic Façade with Perovskite PV Panels—Technical Analysis and Case Study," Energies, MDPI, vol. 16(9), pages 1-23, April.
    5. Mostafa Sabbagh & Siraj Mandourah & Raghda Hareri, 2022. "Light Shelves Optimization for Daylight Improvement in Typical Public Classrooms in Saudi Arabia," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
    6. Lou, Siwei & Li, Danny H.W. & Alshaibani, Khalid A. & Xing, Haowei & Li, Zhengrong & Huang, Yu & Xia, Dawei, 2022. "An all-sky luminance and radiance distribution model for built environment studies," Renewable Energy, Elsevier, vol. 190(C), pages 822-835.
    7. Heangwoo Lee & Chang-ho Choi & Minki Sung, 2018. "Development of a Dimming Lighting Control System Using General Illumination and Location-Awareness Technology," Energies, MDPI, vol. 11(11), pages 1-19, November.
    8. Aniela Kaminska, 2020. "Impact of Building Orientation on Daylight Availability and Energy Savings Potential in an Academic Classroom," Energies, MDPI, vol. 13(18), pages 1-17, September.
    9. Bowen Jia & Wenjie Li & Guanyu Chen & Wenbin Sun & Bowen Wang & Ning Xu, 2023. "Optimized Design of Skylight Arrangement to Enhance the Uniformity of Indoor Sunlight Illumination," Sustainability, MDPI, vol. 15(14), pages 1-18, July.
    10. Jie Li & Qichao Ban & Xueming (Jimmy) Chen & Jiawei Yao, 2019. "Glazing Sizing in Large Atrium Buildings: A Perspective of Balancing Daylight Quantity and Visual Comfort," Energies, MDPI, vol. 12(4), pages 1-14, February.
    11. Antonio Peña-García, 2022. "An Approach for Lighting Calculations in Indoor Mirrored Facilities Based on Virtual Twin-Spaces," Sustainability, MDPI, vol. 14(19), pages 1-10, September.
    12. Chul-Ho Kim & Kang-Soo Kim, 2019. "Development of Sky Luminance and Daylight Illuminance Prediction Methods for Lighting Energy Saving in Office Buildings," Energies, MDPI, vol. 12(4), pages 1-37, February.
    13. Fabrizio M. Amoruso & Udo Dietrich & Thorsten Schuetze, 2019. "Integrated BIM-Parametric Workflow-Based Analysis of Daylight Improvement for Sustainable Renovation of an Exemplary Apartment in Seoul, Korea," Sustainability, MDPI, vol. 11(9), pages 1-29, May.
    14. Andrzej Ożadowicz, 2022. "A Hybrid Approach in Design of Building Energy Management System with Smart Readiness Indicator and Building as a Service Concept," Energies, MDPI, vol. 15(4), pages 1-19, February.
    15. Jaewook Lee & Mohamed Boubekri & Feng Liang, 2019. "Impact of Building Design Parameters on Daylighting Metrics Using an Analysis, Prediction, and Optimization Approach Based on Statistical Learning Technique," Sustainability, MDPI, vol. 11(5), pages 1-21, March.
    16. Kyung Sun Lee & Ki Jun Han & Jae Wook Lee, 2016. "Feasibility Study on Parametric Optimization of Daylighting in Building Shading Design," Sustainability, MDPI, vol. 8(12), pages 1-16, November.
    17. Ignacio Acosta & Jesús León & Pedro Bustamante, 2018. "Daylight Spectrum Index: A New Metric to Assess the Affinity of Light Sources with Daylighting," Energies, MDPI, vol. 11(10), pages 1-19, September.
    18. Agustín Castillo-Martínez & Antonio Peña-García, 2021. "Influence of Groves on Daylight Conditions and Visual Performance of Users of Urban Civil Infrastructures," Sustainability, MDPI, vol. 13(22), pages 1-9, November.
    19. Antonio Peña-García & Ferdinando Salata, 2020. "Indoor Lighting Customization Based on Effective Reflectance Coefficients: A Methodology to Optimize Visual Performance and Decrease Consumption in Educative Workplaces," Sustainability, MDPI, vol. 13(1), pages 1-13, December.
    20. Atthakorn Thongtha & Piromporn Boontham, 2020. "Experimental Investigation of Natural Lighting Systems Using Cylindrical Glass for Energy Saving in Buildings," Energies, MDPI, vol. 13(10), pages 1-12, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:11:p:4087-:d:181231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.