IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i5p635-d98059.html
   My bibliography  Save this article

The Impact of Shading Type and Azimuth Orientation on the Daylighting in a Classroom–Focusing on Effectiveness of Façade Shading, Comparing the Results of DA and UDI

Author

Listed:
  • Kyung Sun Lee

    (School of Architecture, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul 02481, Korea)

  • Ki Jun Han

    (Digit, 12, Dongmak-ro 2-gil, Mapo-gu, Seoul 04071, Korea)

  • Jae Wook Lee

    (School of Architecture, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA)

Abstract

There are many kinds of façade shading designs which provide optimal indoor daylighting conditions. Thus, considering combinations of different types of façade shading systems is an essential aspect in the optimization of daylighting in the building design process. This study explores (1) how the pattern and different characteristics are evaluated by varying façade shading types and considering their impact on daylighting metrics; and (2) the relative relationships between Daylight Autonomy (DA) and Useful Daylight Illuminance (UDI) with changes of the façade shading types, input parameters, and azimuth orientations. A typical high-school classroom has been chosen as a base model, and seven different façade shading types: vertical louver, horizontal louver, eggcrate louver, overhang, vertical slat, horizontal slat, and light shelf have been applied to eight azimuth orientations for the building. As tools for parametric design and indoor lighting analysis, Design Iterate Validate Adapt (DIVA)-for-Grasshopper has been used to obtain DA and UDI for comparison. Based on the simulation, (1) the effectiveness of the installation of façade shading compared to a non-shading case; and (2) design considerations for façade shading are presented. The result shows that there are some meaningful differences in DA and UDI metrics with the variation of orientation and façade shading types, although all cases of façade shading show some degree of decrease in DA and increase in UDI values. The types of shading devices which produce a dramatic decrease in DA values are the light shelf, horizontal slats, horizontal louvers, and eggcrate louvers. On the contrary, the types of shading devices which produce a dramatic increase in UDI values are the light shelf, horizontal slats, horizontal louvers, and eggcrate louvers. In the case of the vertical and vertical slat shading, the improvements of UDI values are significant in the east and west orientations. This demonstrates that the application and design of shading devices in certain façade orientations should be carefully considered for daylight control. Also, the results show that UDI explains relatively well the daylight performance in the case of the installation of a shading device.

Suggested Citation

  • Kyung Sun Lee & Ki Jun Han & Jae Wook Lee, 2017. "The Impact of Shading Type and Azimuth Orientation on the Daylighting in a Classroom–Focusing on Effectiveness of Façade Shading, Comparing the Results of DA and UDI," Energies, MDPI, vol. 10(5), pages 1-20, May.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:5:p:635-:d:98059
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/5/635/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/5/635/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kyung Sun Lee & Ki Jun Han & Jae Wook Lee, 2016. "Feasibility Study on Parametric Optimization of Daylighting in Building Shading Design," Sustainability, MDPI, vol. 8(12), pages 1-16, November.
    2. Freewan, Ahmed A. & Shao, Li & Riffat, Saffa, 2009. "Interactions between louvers and ceiling geometry for maximum daylighting performance," Renewable Energy, Elsevier, vol. 34(1), pages 223-232.
    3. Yeo Beom Yoon & Rashmi Manandhar & Kwang Ho Lee, 2014. "Comparative Study of Two Daylighting Analysis Methods with Regard to Window Orientation and Interior Wall Reflectance," Energies, MDPI, vol. 7(9), pages 1-22, September.
    4. Palmero-Marrero, Ana I. & Oliveira, Armando C., 2010. "Effect of louver shading devices on building energy requirements," Applied Energy, Elsevier, vol. 87(6), pages 2040-2049, June.
    5. Judit Lopez-Besora & Glòria Serra-Coch & Helena Coch & Antonio Isalgue, 2016. "Daylight Management in Mediterranean Cities: When Shortage Is Not the Issue," Energies, MDPI, vol. 9(9), pages 1-12, September.
    6. Datta, Gouri, 2001. "Effect of fixed horizontal louver shading devices on thermal perfomance of building by TRNSYS simulation," Renewable Energy, Elsevier, vol. 23(3), pages 497-507.
    7. Ji-Hyun Lee & Jin Woo Moon & Sooyoung Kim, 2014. "Analysis of Occupants’ Visual Perception to Refine Indoor Lighting Environment for Office Tasks," Energies, MDPI, vol. 7(7), pages 1-24, June.
    8. Lee, J.W. & Jung, H.J. & Park, J.Y. & Lee, J.B. & Yoon, Y., 2013. "Optimization of building window system in Asian regions by analyzing solar heat gain and daylighting elements," Renewable Energy, Elsevier, vol. 50(C), pages 522-531.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lingjiang Huang & Shuangping Zhao, 2017. "Perforated Thermal Mass Shading: An Approach to Winter Solar Shading and Energy, Shading and Daylighting Performance," Energies, MDPI, vol. 10(12), pages 1-18, November.
    2. Abdelhakim Mesloub & Aritra Ghosh & Mabrouk Touahmia & Ghazy Abdullah Albaqawy & Emad Noaime & Badr M. Alsolami, 2020. "Performance Analysis of Photovoltaic Integrated Shading Devices (PVSDs) and Semi-Transparent Photovoltaic (STPV) Devices Retrofitted to a Prototype Office Building in a Hot Desert Climate," Sustainability, MDPI, vol. 12(23), pages 1-17, December.
    3. In-Tae Kim & Yu-Sin Kim & Meeryoung Cho & Hyeonggon Nam & Anseop Choi & Taeyon Hwang, 2019. "High-Performance Accuracy of Daylight-Responsive Dimming Systems with Illuminance by Distant Luminaires for Energy-Saving Buildings," Energies, MDPI, vol. 12(4), pages 1-21, February.
    4. Jaewook Lee & Mohamed Boubekri & Feng Liang, 2019. "Impact of Building Design Parameters on Daylighting Metrics Using an Analysis, Prediction, and Optimization Approach Based on Statistical Learning Technique," Sustainability, MDPI, vol. 11(5), pages 1-21, March.
    5. Atthakorn Thongtha & Piromporn Boontham, 2020. "Experimental Investigation of Natural Lighting Systems Using Cylindrical Glass for Energy Saving in Buildings," Energies, MDPI, vol. 13(10), pages 1-12, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kirimtat, Ayca & Koyunbaba, Basak Kundakci & Chatzikonstantinou, Ioannis & Sariyildiz, Sevil, 2016. "Review of simulation modeling for shading devices in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 23-49.
    2. Taveres-Cachat, Ellika & Lobaccaro, Gabriele & Goia, Francesco & Chaudhary, Gaurav, 2019. "A methodology to improve the performance of PV integrated shading devices using multi-objective optimization," Applied Energy, Elsevier, vol. 247(C), pages 731-744.
    3. Ángel Gómez-Moreno & Pedro José Casanova-Peláez & José Manuel Palomar-Carnicero & Fernando Cruz-Peragón, 2016. "Modeling and Experimental Validation of a Low-Cost Radiation Sensor Based on the Photovoltaic Effect for Building Applications," Energies, MDPI, vol. 9(11), pages 1-16, November.
    4. Stevanović, Sanja, 2013. "Optimization of passive solar design strategies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 177-196.
    5. Aiman Mohammed & Muhammad Atiq Ur Rehman Tariq & Anne Wai Man Ng & Zeeshan Zaheer & Safwan Sadeq & Mahmood Mohammed & Hooman Mehdizadeh-Rad, 2022. "Reducing the Cooling Loads of Buildings Using Shading Devices: A Case Study in Darwin," Sustainability, MDPI, vol. 14(7), pages 1-20, March.
    6. Seung-Ju Choe & Seung-Hoon Han, 2022. "Energy Balance Data-Based Optimization of Louver Installation Angles for Different Regions in Korea," Energies, MDPI, vol. 15(23), pages 1-17, December.
    7. Krstić-Furundžić, Aleksandra & Vujošević, Milica & Petrovski, Aleksandar, 2019. "Energy and environmental performance of the office building facade scenarios," Energy, Elsevier, vol. 183(C), pages 437-447.
    8. Michael, A. & Gregoriou, S. & Kalogirou, S.A., 2018. "Environmental assessment of an integrated adaptive system for the improvement of indoor visual comfort of existing buildings," Renewable Energy, Elsevier, vol. 115(C), pages 620-633.
    9. Palmero-Marrero, Ana I. & Oliveira, Armando C., 2010. "Effect of louver shading devices on building energy requirements," Applied Energy, Elsevier, vol. 87(6), pages 2040-2049, June.
    10. Taesub Lim & Woong Seog Yim & Daeung Danny Kim, 2020. "Evaluation of Daylight and Cooling Performance of Shading Devices in Residential Buildings in South Korea," Energies, MDPI, vol. 13(18), pages 1-14, September.
    11. Danijela Nikolic & Slobodan Djordjevic & Jasmina Skerlic & Jasna Radulovic, 2020. "Energy Analyses of Serbian Buildings with Horizontal Overhangs: A Case Study," Energies, MDPI, vol. 13(17), pages 1-20, September.
    12. Dušan Katunský & Erika Dolníková & Bystrík Dolník, 2018. "Daytime Lighting Assessment in Textile Factories Using Connected Windows in Slovakia: A Case Study," Sustainability, MDPI, vol. 10(3), pages 1-20, February.
    13. Bayoumi, Mohannad & Fink, Dietrich, 2014. "Maximizing the performance of an energy generating façade in terms of energy saving strategies," Renewable Energy, Elsevier, vol. 64(C), pages 294-305.
    14. Giacomo Chiesa & Andrea Acquaviva & Mario Grosso & Lorenzo Bottaccioli & Maurizio Floridia & Edoardo Pristeri & Edoardo Maria Sanna, 2019. "Parametric Optimization of Window-to-Wall Ratio for Passive Buildings Adopting A Scripting Methodology to Dynamic-Energy Simulation," Sustainability, MDPI, vol. 11(11), pages 1-30, May.
    15. Ferenc Kalmár & Tünde Kalmár, 2020. "Thermal Comfort Aspects of Solar Gains during the Heating Season," Energies, MDPI, vol. 13(7), pages 1-15, April.
    16. Souayfane, Farah & Biwole, Pascal Henry & Fardoun, Farouk, 2018. "Thermal behavior of a translucent superinsulated latent heat energy storage wall in summertime," Applied Energy, Elsevier, vol. 217(C), pages 390-408.
    17. Dong Eun Jung & Chanuk Lee & Kwang Ho Lee & Minjae Shin & Sung Lok Do, 2021. "Evaluation of Building Energy Performance with Optimal Control of Movable Shading Device Integrated with PV System," Energies, MDPI, vol. 14(7), pages 1-21, March.
    18. Karolis Banionis & Jurga Kumžienė & Arūnas Burlingis & Juozas Ramanauskas & Valdas Paukštys, 2021. "The Changes in Thermal Transmittance of Window Insulating Glass Units Depending on Outdoor Temperatures in Cold Climate Countries," Energies, MDPI, vol. 14(6), pages 1-22, March.
    19. Halil Alibaba, 2016. "Determination of Optimum Window to External Wall Ratio for Offices in a Hot and Humid Climate," Sustainability, MDPI, vol. 8(2), pages 1-21, February.
    20. Małgorzata Fedorczak-Cisak & Katarzyna Nowak & Marcin Furtak, 2019. "Analysis of the Effect of Using External Venetian Blinds on the Thermal Comfort of Users of Highly Glazed Office Rooms in a Transition Season of Temperate Climate—Case Study," Energies, MDPI, vol. 13(1), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:5:p:635-:d:98059. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.