IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v23y2001i3p497-507.html
   My bibliography  Save this article

Effect of fixed horizontal louver shading devices on thermal perfomance of building by TRNSYS simulation

Author

Listed:
  • Datta, Gouri

Abstract

Buildings in most countries around the world require large amounts of energy both for cooling and heating. In fact cooling loads due to solar gains represent about half of global cooling loads for residential as well as non-residential buildings. While solar gains through windows contribute largely to these loads, any method of decreasing these gains through shading should be applied with caution, since a balance is required; decreasing cooling loads by shading may increase heating loads drastically and vice versa. So the overall energy requirements both for heating and cooling should be considered. With this in mind a study was done on the thermal performance of a building by TRNSYS simulation, and a shading model for windows was incorporated in it. The shading devices adopted were external fixed horizontal louvers with different slat lengths and tilts. The study was conducted for four different cities in Italy. The optimization of the shading devices was done with respect to primary energy loads for the whole year, and the optimum design was found to depend on location and weather conditions. It was also found that shading factor varies with time of day and is different for summer and winter. For example, for Milan it was found that 70% of gain is cut off in summer, while only 40% is cut off in winter by using optimum shading, which is desirable.

Suggested Citation

  • Datta, Gouri, 2001. "Effect of fixed horizontal louver shading devices on thermal perfomance of building by TRNSYS simulation," Renewable Energy, Elsevier, vol. 23(3), pages 497-507.
  • Handle: RePEc:eee:renene:v:23:y:2001:i:3:p:497-507
    DOI: 10.1016/S0960-1481(00)00131-2
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148100001312
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0960-1481(00)00131-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stevanović, Sanja, 2013. "Optimization of passive solar design strategies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 177-196.
    2. Binju P Raj & Chandan Swaroop Meena & Nehul Agarwal & Lohit Saini & Shabir Hussain Khahro & Umashankar Subramaniam & Aritra Ghosh, 2021. "A Review on Numerical Approach to Achieve Building Energy Efficiency for Energy, Economy and Environment (3E) Benefit," Energies, MDPI, vol. 14(15), pages 1-26, July.
    3. Michael, A. & Gregoriou, S. & Kalogirou, S.A., 2018. "Environmental assessment of an integrated adaptive system for the improvement of indoor visual comfort of existing buildings," Renewable Energy, Elsevier, vol. 115(C), pages 620-633.
    4. Seung-Ju Choe & Seung-Hoon Han, 2022. "Energy Balance Data-Based Optimization of Louver Installation Angles for Different Regions in Korea," Energies, MDPI, vol. 15(23), pages 1-17, December.
    5. Ángel Gómez-Moreno & Pedro José Casanova-Peláez & José Manuel Palomar-Carnicero & Fernando Cruz-Peragón, 2016. "Modeling and Experimental Validation of a Low-Cost Radiation Sensor Based on the Photovoltaic Effect for Building Applications," Energies, MDPI, vol. 9(11), pages 1-16, November.
    6. Palmero-Marrero, Ana I. & Oliveira, Armando C., 2010. "Effect of louver shading devices on building energy requirements," Applied Energy, Elsevier, vol. 87(6), pages 2040-2049, June.
    7. Mirrahimi, Seyedehzahra & Mohamed, Mohd Farid & Haw, Lim Chin & Ibrahim, Nik Lukman Nik & Yusoff, Wardah Fatimah Mohammad & Aflaki, Ardalan, 2016. "The effect of building envelope on the thermal comfort and energy saving for high-rise buildings in hot–humid climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1508-1519.
    8. Krstić-Furundžić, Aleksandra & Vujošević, Milica & Petrovski, Aleksandar, 2019. "Energy and environmental performance of the office building facade scenarios," Energy, Elsevier, vol. 183(C), pages 437-447.
    9. Taesub Lim & Woong Seog Yim & Daeung Danny Kim, 2020. "Evaluation of Daylight and Cooling Performance of Shading Devices in Residential Buildings in South Korea," Energies, MDPI, vol. 13(18), pages 1-14, September.
    10. Kirimtat, Ayca & Koyunbaba, Basak Kundakci & Chatzikonstantinou, Ioannis & Sariyildiz, Sevil, 2016. "Review of simulation modeling for shading devices in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 23-49.
    11. Kuo-Tsang Huang & Kevin Fong-Rey Liu & Han-Hsi Liang, 2015. "Design and Energy Performance of a Buoyancy Driven Exterior Shading Device for Building Application in Taiwan," Energies, MDPI, vol. 8(4), pages 1-23, March.
    12. Danijela Nikolic & Slobodan Djordjevic & Jasmina Skerlic & Jasna Radulovic, 2020. "Energy Analyses of Serbian Buildings with Horizontal Overhangs: A Case Study," Energies, MDPI, vol. 13(17), pages 1-20, September.
    13. Taveres-Cachat, Ellika & Lobaccaro, Gabriele & Goia, Francesco & Chaudhary, Gaurav, 2019. "A methodology to improve the performance of PV integrated shading devices using multi-objective optimization," Applied Energy, Elsevier, vol. 247(C), pages 731-744.
    14. Sehyun Tak & Soomin Woo & Jiyoung Park & Sungjin Park, 2017. "Effect of the Changeable Organic Semi-Transparent Solar Cell Window on Building Energy Efficiency and User Comfort," Sustainability, MDPI, vol. 9(6), pages 1-14, June.
    15. Kyung Sun Lee & Ki Jun Han & Jae Wook Lee, 2017. "The Impact of Shading Type and Azimuth Orientation on the Daylighting in a Classroom–Focusing on Effectiveness of Façade Shading, Comparing the Results of DA and UDI," Energies, MDPI, vol. 10(5), pages 1-20, May.
    16. Jian Yao & Rongyue Zheng, 2017. "Stochastic Characteristics of Manual Solar Shades and their Influence on Building Energy Performance," Sustainability, MDPI, vol. 9(6), pages 1-15, June.
    17. Gómez-Muñoz, Victor M. & Porta-Gándara, Miguel Angel, 2003. "Simplified architectural method for the solar control optimization of awnings and external walls in houses in hot and dry climates," Renewable Energy, Elsevier, vol. 28(1), pages 111-127.
    18. Rouhollahi, Mina & Whaley, David & Behrend, Monica & Byrne, Josh & Boland, John, 2022. "The role of residential tree arrangement: A scoping review of energy efficiency in temperate to subtropical climate zones," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:23:y:2001:i:3:p:497-507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.