IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v115y2018icp620-633.html
   My bibliography  Save this article

Environmental assessment of an integrated adaptive system for the improvement of indoor visual comfort of existing buildings

Author

Listed:
  • Michael, A.
  • Gregoriou, S.
  • Kalogirou, S.A.

Abstract

This research aims to propose and evaluate an integrated adaptive system consisting of individual movable modules for the improvement of indoor environmental conditions. The system was evaluated by means of a natural lighting analysis simulation using Ecotect v5.2 and Desktop Radiance v1.02. Daylighting performance indicators, i.e. daylight factor (DF) and uniformity daylight factor (UDF), were calculated for various geometrical configurations. The analysis suggests that the integration of the system in appropriate geometrical configurations maintains high percentages of the plan area exceeding 2% DF, while it drastically increases UDF above the threshold of 0.40. Moreover, an in-depth analysis of natural lighting levels was performed for south-facing spaces during different periods of the year and hours of the day. In the majority of the cases under study, the proposed system maintains a high percentage of the plan area with lighting levels above 500 lux, while it significantly decreases the percentage of area exceeding 3000 lux and thus minimizes the possibilities of glare issues. The research study confirms the positive contribution of the proposed system as a natural lighting regulation system, while it establishes the concept of prosthetic renovation as a renewable energy strategy for the improvement of indoor comfort of existing buildings.

Suggested Citation

  • Michael, A. & Gregoriou, S. & Kalogirou, S.A., 2018. "Environmental assessment of an integrated adaptive system for the improvement of indoor visual comfort of existing buildings," Renewable Energy, Elsevier, vol. 115(C), pages 620-633.
  • Handle: RePEc:eee:renene:v:115:y:2018:i:c:p:620-633
    DOI: 10.1016/j.renene.2017.07.079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117307073
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.07.079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gago, E.J. & Muneer, T. & Knez, M. & Köster, H., 2015. "Natural light controls and guides in buildings. Energy saving for electrical lighting, reduction of cooling load," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1-13.
    2. Datta, Gouri, 2001. "Effect of fixed horizontal louver shading devices on thermal perfomance of building by TRNSYS simulation," Renewable Energy, Elsevier, vol. 23(3), pages 497-507.
    3. Soteris A. Kalogirou, 2015. "Building integration of solar renewable energy systems towards zero or nearly zero energy buildings," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 10(4), pages 379-385.
    4. Soler, Alfonso & Oteiza, Pilar, 1996. "Dependence on solar elevation of the performance of a light shelf as a potential daylighting device," Renewable Energy, Elsevier, vol. 8(1), pages 198-201.
    5. Bougiatioti, Flora & Michael, Aimilios, 2015. "The architectural integration of active solar systems. Building applications in the Eastern Mediterranean region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 966-982.
    6. Palmero-Marrero, Ana I. & Oliveira, Armando C., 2010. "Effect of louver shading devices on building energy requirements," Applied Energy, Elsevier, vol. 87(6), pages 2040-2049, June.
    7. Power, Anne, 2008. "Does demolition or refurbishment of old and inefficient homes help to increase our environmental, social and economic viability?," Energy Policy, Elsevier, vol. 36(12), pages 4487-4501, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabrizio M. Amoruso & Udo Dietrich & Thorsten Schuetze, 2019. "Indoor Thermal Comfort Improvement through the Integrated BIM-Parametric Workflow-Based Sustainable Renovation of an Exemplary Apartment in Seoul, Korea," Sustainability, MDPI, vol. 11(14), pages 1-31, July.
    2. Chul-Ho Kim & Kang-Soo Kim, 2019. "Development of Sky Luminance and Daylight Illuminance Prediction Methods for Lighting Energy Saving in Office Buildings," Energies, MDPI, vol. 12(4), pages 1-37, February.
    3. Amir Faraji & Maria Rashidi & Fatemeh Rezaei & Payam Rahnamayiezekavat, 2023. "A Meta-Synthesis Review of Occupant Comfort Assessment in Buildings (2002–2022)," Sustainability, MDPI, vol. 15(5), pages 1-36, February.
    4. Vassiliades, Constantinos & Michael, Aimilios & Savvides, Andreas & Kalogirou, Soteris, 2018. "Improvement of passive behaviour of existing buildings through the integration of active solar energy systems," Energy, Elsevier, vol. 163(C), pages 1178-1192.
    5. Kyriakidis, Andreas & Michael, Aimilios & Illampas, Rogiros & Charmpis, Dimos C. & Ioannou, Ioannis, 2018. "Thermal performance and embodied energy of standard and retrofitted wall systems encountered in Southern Europe," Energy, Elsevier, vol. 161(C), pages 1016-1027.
    6. Hasim Altan & Bertug Ozarisoy, 2022. "An Analysis of the Development of Modular Building Design Elements to Improve Thermal Performance of a Representative High Rise Residential Estate in the Coastline City of Famagusta, Cyprus," Sustainability, MDPI, vol. 14(7), pages 1-50, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vassiliades, Constantinos & Michael, Aimilios & Savvides, Andreas & Kalogirou, Soteris, 2018. "Improvement of passive behaviour of existing buildings through the integration of active solar energy systems," Energy, Elsevier, vol. 163(C), pages 1178-1192.
    2. Antonis Kontadakis & Aris Tsangrassoulis & Lambros Doulos & Stelios Zerefos, 2017. "A Review of Light Shelf Designs for Daylit Environments," Sustainability, MDPI, vol. 10(1), pages 1-24, December.
    3. Kirimtat, Ayca & Koyunbaba, Basak Kundakci & Chatzikonstantinou, Ioannis & Sariyildiz, Sevil, 2016. "Review of simulation modeling for shading devices in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 23-49.
    4. Taveres-Cachat, Ellika & Lobaccaro, Gabriele & Goia, Francesco & Chaudhary, Gaurav, 2019. "A methodology to improve the performance of PV integrated shading devices using multi-objective optimization," Applied Energy, Elsevier, vol. 247(C), pages 731-744.
    5. Ángel Gómez-Moreno & Pedro José Casanova-Peláez & José Manuel Palomar-Carnicero & Fernando Cruz-Peragón, 2016. "Modeling and Experimental Validation of a Low-Cost Radiation Sensor Based on the Photovoltaic Effect for Building Applications," Energies, MDPI, vol. 9(11), pages 1-16, November.
    6. Stevanović, Sanja, 2013. "Optimization of passive solar design strategies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 177-196.
    7. Gago, E.J. & Muneer, T. & Knez, M. & Köster, H., 2015. "Natural light controls and guides in buildings. Energy saving for electrical lighting, reduction of cooling load," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1-13.
    8. Krstić-Furundžić, Aleksandra & Vujošević, Milica & Petrovski, Aleksandar, 2019. "Energy and environmental performance of the office building facade scenarios," Energy, Elsevier, vol. 183(C), pages 437-447.
    9. Taesub Lim & Woong Seog Yim & Daeung Danny Kim, 2020. "Evaluation of Daylight and Cooling Performance of Shading Devices in Residential Buildings in South Korea," Energies, MDPI, vol. 13(18), pages 1-14, September.
    10. Jing Zhao & Yahui Du, 2019. "A Study on Energy-Saving Technologies Optimization towards Nearly Zero Energy Educational Buildings in Four Major Climatic Regions of China," Energies, MDPI, vol. 12(24), pages 1-31, December.
    11. Danijela Nikolic & Slobodan Djordjevic & Jasmina Skerlic & Jasna Radulovic, 2020. "Energy Analyses of Serbian Buildings with Horizontal Overhangs: A Case Study," Energies, MDPI, vol. 13(17), pages 1-20, September.
    12. Kyung Sun Lee & Ki Jun Han & Jae Wook Lee, 2017. "The Impact of Shading Type and Azimuth Orientation on the Daylighting in a Classroom–Focusing on Effectiveness of Façade Shading, Comparing the Results of DA and UDI," Energies, MDPI, vol. 10(5), pages 1-20, May.
    13. Souayfane, Farah & Biwole, Pascal Henry & Fardoun, Farouk, 2018. "Thermal behavior of a translucent superinsulated latent heat energy storage wall in summertime," Applied Energy, Elsevier, vol. 217(C), pages 390-408.
    14. Dong Eun Jung & Chanuk Lee & Kwang Ho Lee & Minjae Shin & Sung Lok Do, 2021. "Evaluation of Building Energy Performance with Optimal Control of Movable Shading Device Integrated with PV System," Energies, MDPI, vol. 14(7), pages 1-21, March.
    15. Zhikun Ding & Rongsheng Liu & Zongjie Li & Cheng Fan, 2020. "A Thematic Network-Based Methodology for the Research Trend Identification in Building Energy Management," Energies, MDPI, vol. 13(18), pages 1-33, September.
    16. Małgorzata Fedorczak-Cisak & Katarzyna Nowak & Marcin Furtak, 2019. "Analysis of the Effect of Using External Venetian Blinds on the Thermal Comfort of Users of Highly Glazed Office Rooms in a Transition Season of Temperate Climate—Case Study," Energies, MDPI, vol. 13(1), pages 1-18, December.
    17. Sara Brito-Coimbra & Daniel Aelenei & Maria Gloria Gomes & Antonio Moret Rodrigues, 2021. "Building Façade Retrofit with Solar Passive Technologies: A Literature Review," Energies, MDPI, vol. 14(6), pages 1-18, March.
    18. Francesc Valls Dalmau & Pilar Garcia-Almirall & Ernest Redondo Domínguez & David Fonseca Escudero, 2014. "From Raw Data to Meaningful Information: A Representational Approach to Cadastral Databases in Relation to Urban Planning," Future Internet, MDPI, vol. 6(4), pages 1-28, October.
    19. Minjeong Sim & Dongjun Suh & Marc-Oliver Otto, 2021. "Multi-Objective Particle Swarm Optimization-Based Decision Support Model for Integrating Renewable Energy Systems in a Korean Campus Building," Sustainability, MDPI, vol. 13(15), pages 1-18, August.
    20. Sehyun Tak & Soomin Woo & Jiyoung Park & Sungjin Park, 2017. "Effect of the Changeable Organic Semi-Transparent Solar Cell Window on Building Energy Efficiency and User Comfort," Sustainability, MDPI, vol. 9(6), pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:115:y:2018:i:c:p:620-633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.