IDEAS home Printed from https://ideas.repec.org/a/oup/ijlctc/v10y2015i4p379-385..html
   My bibliography  Save this article

Building integration of solar renewable energy systems towards zero or nearly zero energy buildings

Author

Listed:
  • Soteris A. Kalogirou

Abstract

With buildings accounting for 40% of primary energy requirements in EU and the implementation of the Energy Performance of Buildings Directive (EPBD), developing effective energy alternatives for buildings is imperative. The increasing role for renewables implies that solar thermal systems (STSs) and photovoltaics (PVs) will have a main role as they contribute directly to the heating and cooling of buildings and the provision of electricity and domestic hot water. Meeting building electrical and thermal loads will be primarily achieved through an extensive use of renewables, following standard building energy saving measures, such as good insulation or advanced glazing systems. These systems are typically mounted on building roofs with no attempt to incorporate them into the building envelope creating aesthetic challenges, space availability issues and envelope integrity problems. This paper aims to give a survey of possible solutions of PV and STS integration on the building roofs and façades. The advantages of integration are quantified and suggestions are given to address the possible problems created.

Suggested Citation

  • Soteris A. Kalogirou, 2015. "Building integration of solar renewable energy systems towards zero or nearly zero energy buildings," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 10(4), pages 379-385.
  • Handle: RePEc:oup:ijlctc:v:10:y:2015:i:4:p:379-385.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ijlct/ctt071
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sadegh Nikbakht Naserabad & Moslem Akbari Vakilabadi & Mohammad Hossein Ahmadi, 2023. "Commercial building integrated energy system: sizing and energy-economic assessment," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 18, pages 714-726.
    2. Michael, A. & Gregoriou, S. & Kalogirou, S.A., 2018. "Environmental assessment of an integrated adaptive system for the improvement of indoor visual comfort of existing buildings," Renewable Energy, Elsevier, vol. 115(C), pages 620-633.
    3. Buonomano, A. & Forzano, C. & Kalogirou, S.A. & Palombo, A., 2019. "Building-façade integrated solar thermal collectors: Energy-economic performance and indoor comfort simulation model of a water based prototype for heating, cooling, and DHW production," Renewable Energy, Elsevier, vol. 137(C), pages 20-36.
    4. Vassiliades, Constantinos & Michael, Aimilios & Savvides, Andreas & Kalogirou, Soteris, 2018. "Improvement of passive behaviour of existing buildings through the integration of active solar energy systems," Energy, Elsevier, vol. 163(C), pages 1178-1192.
    5. Gagliano, Antonio & Aneli, Stefano & Nocera, Francesco, 2019. "Analysis of the performance of a building solar thermal facade (BSTF) for domestic hot water production," Renewable Energy, Elsevier, vol. 142(C), pages 511-526.
    6. Minjeong Sim & Dongjun Suh & Marc-Oliver Otto, 2021. "Multi-Objective Particle Swarm Optimization-Based Decision Support Model for Integrating Renewable Energy Systems in a Korean Campus Building," Sustainability, MDPI, vol. 13(15), pages 1-18, August.
    7. Karl W. Steininger & Wolf D. Grossmann & Iris Grossmann, 2016. "The economic value of dispatchable solar electricity: a Post-Paris evaluation," Graz Economics Papers 2016-10, University of Graz, Department of Economics.
    8. Wan Afin Fadzlin & Md. Hasanuzzaman & Nasrudin Abd Rahim & Norridah Amin & Zafar Said, 2022. "Global Challenges of Current Building-Integrated Solar Water Heating Technologies and Its Prospects: A Comprehensive Review," Energies, MDPI, vol. 15(14), pages 1-42, July.
    9. Chengyi Li & Qunwu Huang & Yiping Wang, 2020. "Effect of Color Coating of Cover Plate on Thermal Behavior of Flat Plate Solar Collector," Energies, MDPI, vol. 13(24), pages 1-16, December.
    10. Moldovan, Macedon & Rusea, Ioana & Visa, Ion, 2021. "Optimising the thickness of the water layer in a triangle solar thermal collector," Renewable Energy, Elsevier, vol. 173(C), pages 381-388.
    11. Visa, Ion & Moldovan, Macedon & Duta, Anca, 2019. "Novel triangle flat plate solar thermal collector for facades integration," Renewable Energy, Elsevier, vol. 143(C), pages 252-262.
    12. Gonzalo Sánchez-Barroso & Jaime González-Domínguez & Justo García-Sanz-Calcedo, 2020. "Potential Savings in DHW Facilities through the Use of Solar Thermal Energy in the Hospitals of Extremadura (Spain)," IJERPH, MDPI, vol. 17(8), pages 1-16, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ijlctc:v:10:y:2015:i:4:p:379-385.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/ijlct .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.