IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v5y2013i5p1863-1874d25381.html
   My bibliography  Save this article

Transport Pathways for Light Duty Vehicles: Towards a 2° Scenario

Author

Listed:
  • Lewis Fulton

    (Institute of Transportation Studies, University of California Davis, 1605 Tilia Street, Suite 100, Davis, CA 95616, USA)

  • Oliver Lah

    (Wuppertal Institute for Climate, Environment and Energy, Neue Promenade 6 10178 Berlin, Germany)

  • François Cuenot

    (International Energy Agency (IEA) 9, Rue de la Fédération F-75739, Paris Cedex 15, France)

Abstract

The transport sector is the second largest and one of the fastest growing energy end-use sectors, representing 24% of global energy-related greenhouse gas emissions. The International Energy Agency has developed scenarios for the transport sector within the overall concept of mitigation pathways that would be required to limit global warming to 2 °C. This paper builds on these scenarios and illustrates various passenger travel-related strategies for achieving a 2° transport scenario, in particular looking at how much technology improvement is needed in the light of different changes in travel and modal shares in OECD and non-OECD countries. It finds that an integrated approach using all feasible policy options is likely to deliver the required emission reductions at least cost, and that stronger travel-related measures result in significantly lower technological requirements.

Suggested Citation

  • Lewis Fulton & Oliver Lah & François Cuenot, 2013. "Transport Pathways for Light Duty Vehicles: Towards a 2° Scenario," Sustainability, MDPI, vol. 5(5), pages 1-12, April.
  • Handle: RePEc:gam:jsusta:v:5:y:2013:i:5:p:1863-1874:d:25381
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/5/5/1863/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/5/5/1863/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Santos, Georgina & Behrendt, Hannah & Teytelboym, Alexander, 2010. "Part II: Policy instruments for sustainable road transport," Research in Transportation Economics, Elsevier, vol. 28(1), pages 46-91.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Natalia Sobrino & Andres Monzon, 2018. "Towards Low-Carbon Interurban Road Strategies: Identifying Hot Spots Road Corridors in Spain," Sustainability, MDPI, vol. 10(11), pages 1-11, October.
    2. Fang, Yan Ru & Peng, Wei & Urpelainen, Johannes & Hossain, M.S. & Qin, Yue & Ma, Teng & Ren, Ming & Liu, Xiaorui & Zhang, Silu & Huang, Chen & Dai, Hancheng, 2023. "Neutralizing China's transportation sector requires combined decarbonization efforts from power and hydrogen supply," Applied Energy, Elsevier, vol. 349(C).
    3. Won Seok Jang & Jonggun Kim & Bernard A. Engel & Sung Won Kang & Youngkon Park & Heetaek Yoon & Kyoung Jae Lim & Younghun Jung & Yongchul Shin, 2014. "Development of a Prototype Web GIS-Based Disaster Management System for Safe Operation of the Next Generation Bimodal Tram, South Korea—Focused Flooding and Snowfall," Sustainability, MDPI, vol. 6(4), pages 1-20, April.
    4. Oliver Lah, 2017. "Continuity and Change: Dealing with Political Volatility to Advance Climate Change Mitigation Strategies—Examples from the Transport Sector," Sustainability, MDPI, vol. 9(6), pages 1-13, June.
    5. Phillips, Willard & Nicholson, George & Alleyne, Antonio & Alfonso, Maurys, 2023. "Policy considerations for sustainable transportation in three Caribbean small island developing States: options for improving land transportation efficiency. Barbados, the British Virgin Islands and J," Studies and Perspectives – ECLAC Subregional Headquarters for The Caribbean 48725, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    6. Celalettin Yuce & Fatih Karpat & Nurettin Yavuz & Gökhan Sendeniz, 2014. "A Case Study: Designing for Sustainability and Reliability in an Automotive Seat Structure," Sustainability, MDPI, vol. 6(7), pages 1-24, July.
    7. Antonella Lerario & Silvia Di Turi, 2018. "Sustainable Urban Tourism: Reflections on the Need for Building-Related Indicators," Sustainability, MDPI, vol. 10(6), pages 1-25, June.
    8. Abdul-Manan, Amir F.N. & Won, Hyun-Woo & Li, Yang & Sarathy, S. Mani & Xie, Xiaomin & Amer, Amer A., 2020. "Bridging the gap in a resource and climate-constrained world with advanced gasoline compression-ignition hybrids," Applied Energy, Elsevier, vol. 267(C).
    9. Reza Hadjiaghaie Vafaie & Ghader Hosseinzadeh, 2023. "Using a Photoacoustic Cell for Spectroscopy of Toxic Air Pollutants including CO 2 , SO 2 and NO Gases," Sustainability, MDPI, vol. 15(12), pages 1-11, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dietrich, Antje-Mareike, 2016. "Governmental platform intermediation to promote alternative fuel vehicles," Economics Department Working Paper Series 16, Technische Universität Braunschweig, Economics Department.
    2. Hakim Hammadou & Claire Papaix, 2015. "Policy packages for modal shift and CO2 reduction in Lille, France," Working Papers 1501, Chaire Economie du climat.
    3. Bayissa Badada Badassa & Baiqing Sun & Lixin Qiao, 2020. "Sustainable Transport Infrastructure and Economic Returns: A Bibliometric and Visualization Analysis," Sustainability, MDPI, vol. 12(5), pages 1-24, March.
    4. Ali Enes Dingil & Federico Rupi & Domokos Esztergár-Kiss, 2021. "An Integrative Review of Socio-Technical Factors Influencing Travel Decision-Making and Urban Transport Performance," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    5. Hache, Emmanuel & Seck, Gondia Sokhna & Simoen, Marine & Bonnet, Clément & Carcanague, Samuel, 2019. "Critical raw materials and transportation sector electrification: A detailed bottom-up analysis in world transport," Applied Energy, Elsevier, vol. 240(C), pages 6-25.
    6. Yongjun Shen & Qiong Bao & Elke Hermans, 2020. "Applying an Alternative Approach for Assessing Sustainable Road Transport: A Benchmarking Analysis on EU Countries," Sustainability, MDPI, vol. 12(24), pages 1-16, December.
    7. Tsita, Katerina G. & Pilavachi, Petros A., 2012. "Evaluation of alternative fuels for the Greek road transport sector using the analytic hierarchy process," Energy Policy, Elsevier, vol. 48(C), pages 677-686.
    8. Feitelson, Eran & Cohen-Blankshtain, Galit, 2018. "Public transport planning in a spatially segmented city: The case of Jerusalem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 107(C), pages 65-74.
    9. Ellen De Schepper & Steven Van Passel & Sebastien Lizin & Thomas Vincent & Benjamin Martin & Xavier Gandibleux, 2016. "Economic and environmental multi-objective optimisation to evaluate the impact of Belgian policy on solar power and electric vehicles," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 5(1), pages 1-27, March.
    10. AlSabbagh, Maha & Siu, Yim Ling & Guehnemann, Astrid & Barrett, John, 2017. "Integrated approach to the assessment of CO2e-mitigation measures for the road passenger transport sector in Bahrain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 203-215.
    11. Behrends, Sönke, 2017. "Burden or opportunity for modal shift? – Embracing the urban dimension of intermodal road-rail transport," Transport Policy, Elsevier, vol. 59(C), pages 10-16.
    12. Alexander Petre & Jeffrey Wagner, 2013. "Green Consumption under Misperceived Prices: An Application to Active Transportation," Southern Economic Journal, John Wiley & Sons, vol. 80(1), pages 187-204, July.
    13. Ballo, Lukas & de Freitas, Lucas Meyer & Meister, Adrian & Axhausen, Kay W., 2023. "The E-Bike City as a radical shift toward zero-emission transport: Sustainable? Equitable? Desirable?," Journal of Transport Geography, Elsevier, vol. 111(C).
    14. Carlo Amendola & Simone La Bella & Gian Piero Joime & Fabio Massimo Frattale Mascioli & Pietro Vito, 2022. "An Integrated Methodology Model for Smart Mobility System Applied to Sustainable Tourism," Administrative Sciences, MDPI, vol. 12(1), pages 1-14, March.
    15. Leonardo Sierra & Felipe Araya & Víctor Yepes, 2021. "Consideration of Uncertainty and Multiple Disciplines in the Determination of Sustainable Criteria for Rural Roads Using Neutrosophic Logic," Sustainability, MDPI, vol. 13(17), pages 1-15, September.
    16. Pietro Lanzini & Andrea Stocchetti, 2017. "The evolution of the conceptual basis for the assessment of urban mobility sustainability impacts," Working Papers 02, Department of Management, Università Ca' Foscari Venezia.
    17. Elvik, Rune & Ramjerdi, Farideh, 2014. "A comparative analysis of the effects of economic policy instruments in promoting environmentally sustainable transport," Transport Policy, Elsevier, vol. 33(C), pages 89-95.
    18. Grischkat, Sylvie & Hunecke, Marcel & Böhler, Susanne & Haustein, Sonja, 2014. "Potential for the reduction of greenhouse gas emissions through the use of mobility services," Transport Policy, Elsevier, vol. 35(C), pages 295-303.
    19. Barbour, Elisa & Chatman, Daniel G. & Doggett, Sarah & Yip, Stella & Santana, Manuel, 2019. "SB 743 Implementation: Challenges and Opportunities," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4gj3n2n3, Institute of Transportation Studies, UC Berkeley.
    20. Hatamzadeh, Yaser, 2021. "Working commuters’ tendency toward a travel pattern with potentially more walking: Examining the relative influence of personal and environmental measures," Research in Transportation Economics, Elsevier, vol. 86(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:5:y:2013:i:5:p:1863-1874:d:25381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.