IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i8p3488-d1634156.html
   My bibliography  Save this article

Analysis of Factors Affecting Electric Vehicle Range Estimation: A Case Study of the Eskisehir Osmangazi University Campus

Author

Listed:
  • Ahmet Alperen Polat

    (Center of Intelligent Systems Applications Research, Eskisehir Osmangazi University, Eskişehir 26040, Türkiye)

  • Sinem Bozkurt Keser

    (Department of Computer Engineering, Eskişehir Osmangazi University, Eskişehir 26040, Türkiye)

  • İnci Sarıçiçek

    (Center of Intelligent Systems Applications Research, Eskisehir Osmangazi University, Eskişehir 26040, Türkiye
    Department of Industrial Engineering, Eskişehir Osmangazi University, Eskişehir 26040, Türkiye)

  • Ahmet Yazıcı

    (Center of Intelligent Systems Applications Research, Eskisehir Osmangazi University, Eskişehir 26040, Türkiye
    Department of Computer Engineering, Eskişehir Osmangazi University, Eskişehir 26040, Türkiye)

Abstract

In recent years, electric vehicles have become increasingly widespread, both in the logistics sector and in personal use. This increase, together with factors such as environmental concerns and government incentives, has brought energy consumption and range estimation issues to the forefront. In this study, the energy consumption of an electric cargo vehicle under different speed and load conditions is examined with an experimental and data-driven approach, and then used for range estimation. The raw data collected from the vehicle on the selected ~2 km route in Eskisehir Osmangazi University campus are combined into per-second samples with time synchronization and data cleaning. The route is divided into average of 150 m segments, and variables such as slope, energy consumption, and acceleration are calculated for each segment. Then, the data are used to train various machine learning models, such as Extra Trees, CatBoost, LightGBM, Voting Regressor, and XGBoost, and their performances regarding energy consumption-based range estimation are compared. The findings show that driving dynamics such as high speed and sudden acceleration, as well as road slope and load conditions, significantly shape the energy consumption and thus the remaining range. In particular, Extra Trees outperforms other machine learning models in terms of metrics such as R 2 , RMSE and, MAE, with a reasonable computational time. The results provide applicable guidance in areas such as route optimization, smart battery management, and charging infrastructure to reduce range anxiety and increase the operational efficiency of electric vehicles.

Suggested Citation

  • Ahmet Alperen Polat & Sinem Bozkurt Keser & İnci Sarıçiçek & Ahmet Yazıcı, 2025. "Analysis of Factors Affecting Electric Vehicle Range Estimation: A Case Study of the Eskisehir Osmangazi University Campus," Sustainability, MDPI, vol. 17(8), pages 1-23, April.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:8:p:3488-:d:1634156
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/8/3488/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/8/3488/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bogdan Ovidiu Varga & Arsen Sagoian & Florin Mariasiu, 2019. "Prediction of Electric Vehicle Range: A Comprehensive Review of Current Issues and Challenges," Energies, MDPI, vol. 12(5), pages 1-19, March.
    2. Huang, Haichao & Li, Bowen & Wang, Yizhou & Zhang, Zhe & He, Hongdi, 2024. "Analysis of factors influencing energy consumption of electric vehicles: Statistical, predictive, and causal perspectives," Applied Energy, Elsevier, vol. 375(C).
    3. Witsarut Achariyaviriya & Wongkot Wongsapai & Kittitat Janpoom & Tossapon Katongtung & Yuttana Mona & Nakorn Tippayawong & Pana Suttakul, 2023. "Estimating Energy Consumption of Battery Electric Vehicles Using Vehicle Sensor Data and Machine Learning Approaches," Energies, MDPI, vol. 16(17), pages 1-14, September.
    4. Jakov Topić & Branimir Škugor & Joško Deur, 2019. "Neural Network-Based Modeling of Electric Vehicle Energy Demand and All Electric Range," Energies, MDPI, vol. 12(7), pages 1-20, April.
    5. Aritra Ghosh, 2020. "Possibilities and Challenges for the Inclusion of the Electric Vehicle (EV) to Reduce the Carbon Footprint in the Transport Sector: A Review," Energies, MDPI, vol. 13(10), pages 1-22, May.
    6. Enjian Yao & Zhiqiang Yang & Yuanyuan Song & Ting Zuo, 2013. "Comparison of Electric Vehicle’s Energy Consumption Factors for Different Road Types," Discrete Dynamics in Nature and Society, Hindawi, vol. 2013, pages 1-7, December.
    7. Edward Kozłowski & Piotr Wiśniowski & Maciej Gis & Magdalena Zimakowska-Laskowska & Anna Borucka, 2024. "Vehicle Acceleration and Speed as Factors Determining Energy Consumption in Electric Vehicles," Energies, MDPI, vol. 17(16), pages 1-16, August.
    8. Gurusamy, Azhaganathan & Bokdia, Akshat & Kumar, Harsh & Ashok, Bragadeshwaran & Gunavathi, Chellamuthu, 2025. "Appositeness of automated machine learning libraries on prediction of energy consumption for electric two-wheelers based on micro-trip approach," Energy, Elsevier, vol. 320(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xinfang & Zhang, Zhe & Liu, Yang & Xu, Zhigang & Qu, Xiaobo, 2024. "A review of machine learning approaches for electric vehicle energy consumption modelling in urban transportation," Renewable Energy, Elsevier, vol. 234(C).
    2. Adriana Skuza & Emilia M. Szumska & Rafał Jurecki & Artur Pawelec, 2024. "Modeling the Impact of Traffic Parameters on Electric Vehicle Energy Consumption," Energies, MDPI, vol. 17(21), pages 1-19, October.
    3. Valery Vodovozov & Zoja Raud & Eduard Petlenkov, 2021. "Review on Braking Energy Management in Electric Vehicles," Energies, MDPI, vol. 14(15), pages 1-26, July.
    4. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    5. Yashraj Tripathy & Andrew McGordon & Anup Barai, 2020. "Improving Accessible Capacity Tracking at Low Ambient Temperatures for Range Estimation of Battery Electric Vehicles," Energies, MDPI, vol. 13(8), pages 1-18, April.
    6. Md. Mosaraf Hossain Khan & Amran Hossain & Aasim Ullah & Molla Shahadat Hossain Lipu & S. M. Shahnewaz Siddiquee & M. Shafiul Alam & Taskin Jamal & Hafiz Ahmed, 2021. "Integration of Large-Scale Electric Vehicles into Utility Grid: An Efficient Approach for Impact Analysis and Power Quality Assessment," Sustainability, MDPI, vol. 13(19), pages 1-18, October.
    7. Rafał Kopacz & Michał Harasimczuk & Bartosz Lasek & Rafał Miśkiewicz & Jacek Rąbkowski, 2021. "All-SiC ANPC Submodule for an Advanced 1.5 kV EV Charging System under Various Modulation Methods," Energies, MDPI, vol. 14(17), pages 1-16, September.
    8. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    9. Mohamed Abdel-Basset & Abduallah Gamal & Ibrahim M. Hezam & Karam M. Sallam, 2024. "Sustainability assessment of optimal location of electric vehicle charge stations: a conceptual framework for green energy into smart cities," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(5), pages 11475-11513, May.
    10. Timo Busch & Michael L. Barnett & Roger Leonard Burritt & Benjamin W. Cashore & R. Edward Freeman & Irene Henriques & Bryan W. Husted & Rajat Panwar & Jonatan Pinkse & Stefan Schaltegger & Jeff York, 2024. "Moving beyond “the” business case: How to make corporate sustainability work," Business Strategy and the Environment, Wiley Blackwell, vol. 33(2), pages 776-787, February.
    11. Wang, Hua & Zhao, De & Meng, Qiang & Ong, Ghim Ping & Lee, Der-Horng, 2020. "Network-level energy consumption estimation for electric vehicles considering vehicle and user heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 30-46.
    12. Tran, Cong Quoc & Keyvan-Ekbatani, Mehdi & Ngoduy, Dong & Watling, David, 2021. "Stochasticity and environmental cost inclusion for electric vehicles fast-charging facility deployment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    13. Bi, Huibo & Shang, Wen-Long & Chen, Yanyan & Wang, Kezhi & Yu, Qing & Sui, Yi, 2021. "GIS aided sustainable urban road management with a unifying queueing and neural network model," Applied Energy, Elsevier, vol. 291(C).
    14. Jiaming Zhou & Chunxiao Feng & Qingqing Su & Shangfeng Jiang & Zhixian Fan & Jiageng Ruan & Shikai Sun & Leli Hu, 2022. "The Multi-Objective Optimization of Powertrain Design and Energy Management Strategy for Fuel Cell–Battery Electric Vehicle," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    15. Liang Zhang & Shunli Wang & Daniel-Ioan Stroe & Chuanyun Zou & Carlos Fernandez & Chunmei Yu, 2020. "An Accurate Time Constant Parameter Determination Method for the Varying Condition Equivalent Circuit Model of Lithium Batteries," Energies, MDPI, vol. 13(8), pages 1-12, April.
    16. Emilia M. Szumska & Rafał S. Jurecki, 2021. "Parameters Influencing on Electric Vehicle Range," Energies, MDPI, vol. 14(16), pages 1-23, August.
    17. Li, Jiapei & Xie, Chi, 2024. "Identifying and minimizing critical driving range thresholds for electric vehicles in intercity networks," Socio-Economic Planning Sciences, Elsevier, vol. 93(C).
    18. Mariusz Graba & Jarosław Mamala & Andrzej Bieniek & Andrzej Augustynowicz & Krystian Czernek & Andżelika Krupińska & Sylwia Włodarczak & Marek Ochowiak, 2023. "Assessment of Energy Demand for PHEVs in Year-Round Operating Conditions," Energies, MDPI, vol. 16(14), pages 1-19, July.
    19. Shimi Sudha Letha & Math H. J. Bollen & Tatiano Busatto & Angela Espin Delgado & Enock Mulenga & Hamed Bakhtiari & Jil Sutaria & Kazi Main Uddin Ahmed & Naser Nakhodchi & Selçuk Sakar & Vineetha Ravin, 2023. "Power Quality Issues of Electro-Mobility on Distribution Network—An Overview," Energies, MDPI, vol. 16(13), pages 1-21, June.
    20. Maria Giuffrida & Riccardo Mangiaracina, 2020. "Green Practices for Global Supply Chains in Diverse Industrial, Geographical, and Technological Settings: A Literature Review and Research Agenda," Sustainability, MDPI, vol. 12(23), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:8:p:3488-:d:1634156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.