IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i7p3092-d1624903.html
   My bibliography  Save this article

Sustainable Mobility and Shared Autonomous Vehicles: A Systematic Literature Review of Travel Behavior Impacts

Author

Listed:
  • Alessandro La Delfa

    (School of Economics and Management, Tongji University, Shanghai 200092, China)

  • Zheng Han

    (School of Economics and Management, Tongji University, Shanghai 200092, China)

Abstract

Shared autonomous vehicles (SAVs) are emerging as a potential tool for sustainable transportation, yet their impact on travel behavior and environmental outcomes remains uncertain. This review evaluates the sustainability implications of SAV adoption, including its potential to reduce emissions through optimized fleet operations, enhance social equity by improving mobility access, and increase economic efficiency through resource-sharing models. This systematic literature review examines 107 articles from English and Chinese databases, focusing on SAVs’ effects on total travel demand, mode choice, and in-vehicle time use. Findings indicate that SAVs could increase vehicle miles traveled due to unoccupied relocation and new demand from previously underserved demographics, though advanced booking and dispatch systems may mitigate this increase. The study identifies 59 factors influencing SAV adoption, categorized as user-centric, contextual, and psycho-attitudinal. Analysis of in-vehicle time use shows varied activities, from productivity to leisure, with contradictory findings in the value of travel time (VOT) compared to conventional vehicles: while some studies report up to 34% lower VOT for SAVs due to multitasking opportunities, others find up to 29% higher VOT. Privacy and personal space emerge as important factors, with users showing a high willingness to pay to avoid additional passengers. The review highlights underexplored variables and methodological limitations in current research, including psychological influences and mode substitution dynamics. These insights inform policymakers and urban planners on how to integrate SAVs into sustainable transportation systems by mitigating their environmental impact, promoting equitable access, and ensuring alignment with smart urban planning strategies.

Suggested Citation

  • Alessandro La Delfa & Zheng Han, 2025. "Sustainable Mobility and Shared Autonomous Vehicles: A Systematic Literature Review of Travel Behavior Impacts," Sustainability, MDPI, vol. 17(7), pages 1-39, March.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:7:p:3092-:d:1624903
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/7/3092/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/7/3092/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Prateek Bansal & Kara M. Kockelman, 2018. "Are we ready to embrace connected and self-driving vehicles? A case study of Texans," Transportation, Springer, vol. 45(2), pages 641-675, March.
    2. Hao Yin & Elisabetta Cherchi, 2024. "Willingness to pay for automated taxis: a stated choice experiment to measure the impact of in-vehicle features and customer reviews," Transportation, Springer, vol. 51(1), pages 51-72, February.
    3. Yutong Cai & Hua Wang & Ghim Ping Ong & Qiang Meng & Der-Horng Lee, 2019. "Investigating user perception on autonomous vehicle (AV) based mobility-on-demand (MOD) services in Singapore using the logit kernel approach," Transportation, Springer, vol. 46(6), pages 2063-2080, December.
    4. James Murphy & P. Allen & Thomas Stevens & Darryl Weatherhead, 2005. "A Meta-analysis of Hypothetical Bias in Stated Preference Valuation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 30(3), pages 313-325, March.
    5. Loeb, Benjamin & Kockelman, Kara M., 2019. "Fleet performance and cost evaluation of a shared autonomous electric vehicle (SAEV) fleet: A case study for Austin, Texas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 374-385.
    6. Snyder, Hannah, 2019. "Literature review as a research methodology: An overview and guidelines," Journal of Business Research, Elsevier, vol. 104(C), pages 333-339.
    7. Filippo Carrese & Simone Sportiello & Tolegen Zhaksylykov & Chiara Colombaroni & Stefano Carrese & Muzio Papaveri & Sergio Maria Patella, 2023. "The Integration of Shared Autonomous Vehicles in Public Transportation Services: A Systematic Review," Sustainability, MDPI, vol. 15(17), pages 1-12, August.
    8. Jingya Gao & Andisheh Ranjbari & Don MacKenzie, 2019. "Would being driven by others affect the value of travel time? Ridehailing as an analogy for automated vehicles," Transportation, Springer, vol. 46(6), pages 2103-2116, December.
    9. Lavieri, Patrícia S. & Bhat, Chandra R., 2019. "Modeling individuals’ willingness to share trips with strangers in an autonomous vehicle future," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 242-261.
    10. Dorina Pojani & Dominic Stead, 2015. "Sustainable Urban Transport in the Developing World: Beyond Megacities," Sustainability, MDPI, vol. 7(6), pages 1-22, June.
    11. Shelly Etzioni & Jamil Hamadneh & Arnór B. Elvarsson & Domokos Esztergár-Kiss & Milena Djukanovic & Stelios N. Neophytou & Jaka Sodnik & Amalia Polydoropoulou & Ioannis Tsouros & Cristina Pronello & N, 2020. "Modeling Cross-National Differences in Automated Vehicle Acceptance," Sustainability, MDPI, vol. 12(22), pages 1-22, November.
    12. Md. Mokhlesur Rahman & Jean-Claude Thill, 2023. "What Drives People’s Willingness to Adopt Autonomous Vehicles? A Review of Internal and External Factors," Sustainability, MDPI, vol. 15(15), pages 1-29, July.
    13. Xiaoyan Wang & Xi Lin & Meng Li, 2021. "Aggregate Modeling and Equilibrium Analysis of the Crowdsourcing Market for Autonomous Vehicles," Papers 2102.07147, arXiv.org.
    14. Oh, Simon & Seshadri, Ravi & Azevedo, Carlos Lima & Kumar, Nishant & Basak, Kakali & Ben-Akiva, Moshe, 2020. "Assessing the impacts of automated mobility-on-demand through agent-based simulation: A study of Singapore," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 367-388.
    15. Yao, Xusheng & Ma, Shoufeng & Bai, Yin & Jia, Ning, 2022. "When are new energy vehicle incentives effective? Empirical evidence from 88 pilot cities in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 207-224.
    16. Gurumurthy, Krishna Murthy & Kockelman, Kara M., 2020. "Modeling Americans’ autonomous vehicle preferences: A focus on dynamic ride-sharing, privacy & long-distance mode choices," Technological Forecasting and Social Change, Elsevier, vol. 150(C).
    17. Wang, Shenhao & Zhao, Jinhua, 2019. "Risk preference and adoption of autonomous vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 215-229.
    18. Mao, Wei & Shepherd, Simon & Harrison, Gillian & Xu, Meng, 2024. "Autonomous vehicle market development in Beijing: A system dynamics approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    19. Ryosuke Abe & Yusuke Kita & Daisuke Fukuda, 2020. "An Experimental Approach to Understanding the Impacts of Monitoring Methods on Use Intentions for Autonomous Vehicle Services: Survey Evidence from Japan," Sustainability, MDPI, vol. 12(6), pages 1-16, March.
    20. Milakis, Dimitris & Kroesen, Maarten & van Wee, Bert, 2018. "Implications of automated vehicles for accessibility and location choices: Evidence from an expert-based experiment," Journal of Transport Geography, Elsevier, vol. 68(C), pages 142-148.
    21. Rico Krueger & Taha H. Rashidi & Vinayak V. Dixit, 2019. "Autonomous Driving and Residential Location Preferences: Evidence from a Stated Choice Survey," Papers 1905.11486, arXiv.org, revised Sep 2019.
    22. Wang, Kaili & Salehin, Mohammad Faizus & Nurul Habib, Khandker, 2021. "A discrete choice experiment on consumer’s willingness-to-pay for vehicle automation in the Greater Toronto Area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 12-30.
    23. Wadud, Zia & MacKenzie, Don & Leiby, Paul, 2016. "Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 1-18.
    24. Samuel Chng & Sabreena Anowar & Lynette Cheah, 2022. "Understanding Shared Autonomous Vehicle Preferences: A Comparison between Shuttles, Buses, Ridesharing and Taxis," Sustainability, MDPI, vol. 14(20), pages 1-14, October.
    25. Liliana Andrei & Oana Luca & Florian Gaman, 2022. "Insights from User Preferences on Automated Vehicles: Influence of Socio-Demographic Factors on Value of Time in Romania Case," Sustainability, MDPI, vol. 14(17), pages 1-22, August.
    26. Peng Jing & Gang Xu & Yuexia Chen & Yuji Shi & Fengping Zhan, 2020. "The Determinants behind the Acceptance of Autonomous Vehicles: A Systematic Review," Sustainability, MDPI, vol. 12(5), pages 1-26, February.
    27. Kolarova, Viktoriya & Steck, Felix & Bahamonde-Birke, Francisco J., 2019. "Assessing the effect of autonomous driving on value of travel time savings: A comparison between current and future preferences," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 155-169.
    28. Webb, Jeremy & Wilson, Clevo & Kularatne, Thamarasi, 2019. "Will people accept shared autonomous electric vehicles? A survey before and after receipt of the costs and benefits," Economic Analysis and Policy, Elsevier, vol. 61(C), pages 118-135.
    29. Saeed, Tariq Usman & Burris, Mark W. & Labi, Samuel & Sinha, Kumares C., 2020. "An empirical discourse on forecasting the use of autonomous vehicles using consumers’ preferences," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    30. Gelauff, George & Ossokina, Ioulia & Teulings, Coen, 2019. "Spatial and welfare effects of automated driving: Will cities grow, decline or both?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 277-294.
    31. Daniel P. Piatkowski, 2021. "Autonomous Shuttles: What Do Users Expect and How Will They Use Them?," Journal of Urban Technology, Taylor & Francis Journals, vol. 28(3-4), pages 97-115, October.
    32. Tian, Li-Jun & Sheu, Jiuh-Biing & Huang, Hai-Jun, 2019. "The morning commute problem with endogenous shared autonomous vehicle penetration and parking space constraint," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 258-278.
    33. Yang Liao & Hanying Guo & Xinju Liu, 2023. "A Study of Young People’s Intention to Use Shared Autonomous Vehicles: A Quantitative Analysis Model Based on the Extended TPB-TAM," Sustainability, MDPI, vol. 15(15), pages 1-21, August.
    34. Barbour, Natalia & Menon, Nikhil & Zhang, Yu & Mannering, Fred, 2019. "Shared automated vehicles: A statistical analysis of consumer use likelihoods and concerns," Transport Policy, Elsevier, vol. 80(C), pages 86-93.
    35. Felix Becker & Kay W. Axhausen, 2017. "Literature review on surveys investigating the acceptance of automated vehicles," Transportation, Springer, vol. 44(6), pages 1293-1306, November.
    36. Yue Ding & Ruimin Li & Xiaokun Wang & Joshua Schmid, 2022. "Heterogeneity of autonomous vehicle adoption behavior due to peer effects and prior-AV knowledge," Transportation, Springer, vol. 49(6), pages 1837-1860, December.
    37. Gopindra Sivakumar Nair & Sebastian Astroza & Chandra R. Bhat & Sara Khoeini & Ram M. Pendyala, 2018. "An application of a rank ordered probit modeling approach to understanding level of interest in autonomous vehicles," Transportation, Springer, vol. 45(6), pages 1623-1637, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amalia Polydoropoulou & Ioannis Tsouros & Nikolas Thomopoulos & Cristina Pronello & Arnór Elvarsson & Haraldur Sigþórsson & Nima Dadashzadeh & Kristina Stojmenova & Jaka Sodnik & Stelios Neophytou & D, 2021. "Who Is Willing to Share Their AV? Insights about Gender Differences among Seven Countries," Sustainability, MDPI, vol. 13(9), pages 1-19, April.
    2. Liliana Andrei & Oana Luca & Florian Gaman, 2022. "Insights from User Preferences on Automated Vehicles: Influence of Socio-Demographic Factors on Value of Time in Romania Case," Sustainability, MDPI, vol. 14(17), pages 1-22, August.
    3. Li, Dun & Huang, Youlin & Qian, Lixian, 2022. "Potential adoption of robotaxi service: The roles of perceived benefits to multiple stakeholders and environmental awareness," Transport Policy, Elsevier, vol. 126(C), pages 120-135.
    4. Md. Mokhlesur Rahman & Jean-Claude Thill, 2023. "What Drives People’s Willingness to Adopt Autonomous Vehicles? A Review of Internal and External Factors," Sustainability, MDPI, vol. 15(15), pages 1-29, July.
    5. Dubey, Subodh & Sharma, Ishant & Mishra, Sabyasachee & Cats, Oded & Bansal, Prateek, 2022. "A General Framework to Forecast the Adoption of Novel Products: A Case of Autonomous Vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 63-95.
    6. Shelly Etzioni & Jamil Hamadneh & Arnór B. Elvarsson & Domokos Esztergár-Kiss & Milena Djukanovic & Stelios N. Neophytou & Jaka Sodnik & Amalia Polydoropoulou & Ioannis Tsouros & Cristina Pronello & N, 2020. "Modeling Cross-National Differences in Automated Vehicle Acceptance," Sustainability, MDPI, vol. 12(22), pages 1-22, November.
    7. Talebian, Ahmadreza & Mishra, Sabyasachee, 2022. "Unfolding the state of the adoption of connected autonomous trucks by the commercial fleet owner industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    8. Félix Carreyre & Nicolas Coulombel & Jaâfar Berrada & Laurent Bouillaut, 2022. "Economic evaluation of autonomous passenger transportation services: a systematic review and meta-analysis of simulation studies," Revue d'économie industrielle, De Boeck Université, vol. 0(2), pages 89-138.
    9. Tao, Tao & Cao, Jason, 2022. "Examining motivations for owning autonomous vehicles: Implications for land use and transportation," Journal of Transport Geography, Elsevier, vol. 102(C).
    10. Guan, Jinping & Chen, Kexin & Mao, Runfei & Shamshiripour, Ali & Zhang, Xiaochun & Liang, Chen & Ben-Akiva, Moshe, 2024. "The willingness to pay for the automated vehicle subscription: Insights from a car-oriented population in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 188(C).
    11. Wali, Behram & Santi, Paolo & Ratti, Carlo, 2023. "Are californians willing to use shared automated vehicles (SAV) & renounce existing vehicles? An empirical analysis of factors determining SAV use & household vehicle ownership," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    12. Wang, Jinghui & Yang, Hao, 2023. "Low carbon future of vehicle sharing, automation, and electrification: A review of modeling mobility behavior and demand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    13. Lee, Juhyun & Tommy Gim, Tae-Hyoung, 2024. "Reconsidering AVs future: A socio-spatial perspective," Technology in Society, Elsevier, vol. 78(C).
    14. Rubén Cordera & Soledad Nogués & Esther González-González & José Luis Moura, 2021. "Modeling the Impacts of Autonomous Vehicles on Land Use Using a LUTI Model," Sustainability, MDPI, vol. 13(4), pages 1-16, February.
    15. Limin Tan & Changxi Ma & Xuecai Xu & Jin Xu, 2019. "Choice Behavior of Autonomous Vehicles Based on Logistic Models," Sustainability, MDPI, vol. 12(1), pages 1-16, December.
    16. Benoît Lécureux & Adrien Bonnet & Ouassim Manout & Jaâfar Berrada & Louafi Bouzouina, 2022. "Acceptance of Shared Autonomous Vehicles: A Literature Review of stated choice experiments," Working Papers hal-03814947, HAL.
    17. Lee, Jaehyung & Lee, Euntak & Yun, Jaewoong & Chung, Jin-Hyuk & Kim, Jinhee, 2021. "Latent heterogeneity in autonomous driving preferences and in-vehicle activities by travel distance," Journal of Transport Geography, Elsevier, vol. 94(C).
    18. Zhiwei Liu & Jianrong Liu, 2023. "Shared Autonomous Vehicles as Last-Mile Public Transport of Metro Trips," Sustainability, MDPI, vol. 15(19), pages 1-15, October.
    19. Saeed, Tariq Usman & Burris, Mark W. & Labi, Samuel & Sinha, Kumares C., 2020. "An empirical discourse on forecasting the use of autonomous vehicles using consumers’ preferences," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    20. Zarbakhshnia, Navid & Ma, Zhenliang, 2024. "Critical success factors for the adoption of AVs in sustainable urban transportation," Transport Policy, Elsevier, vol. 156(C), pages 62-76.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:7:p:3092-:d:1624903. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.