IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v138y2020icp367-388.html
   My bibliography  Save this article

Assessing the impacts of automated mobility-on-demand through agent-based simulation: A study of Singapore

Author

Listed:
  • Oh, Simon
  • Seshadri, Ravi
  • Azevedo, Carlos Lima
  • Kumar, Nishant
  • Basak, Kakali
  • Ben-Akiva, Moshe

Abstract

The advent of autonomous vehicle technologies and the emergence of new ride-sourcing business models has spurred interest in Automated Mobility-on-Demand (AMOD) as a prospective solution to meet the challenges of urbanization. AMOD has the potential of providing a convenient, reliable and affordable mobility service through more competitive cost structures enabled by autonomy (relative to existing services) and more efficient centralized fleet operations. However, the short and medium-term impacts of AMOD are as yet uncertain. On the one hand, it has the potential to alleviate congestion through increased ride-sharing and reduced car-ownership, and by complementing mass-transit. Conversely, AMOD may in fact worsen congestion due to induced demand, the cannibalization of public transit shares, and an increase in Vehicle-Kilometers Traveled (VKT) because of rebalancing and empty trips. This study attempts to systematically examine the impacts of AMOD on transportation in Singapore through agent-based simulation, modeling demand, supply and their interactions explicitly. On the demand side, we utilize an activity-based model system, that draws on data from a smartphone-based stated preferences survey conducted in Singapore. On the supply side, we model the operations of the AMOD fleet (including the assignment of requests to vehicles and rebalancing), which are integrated within a multimodal mesoscopic traffic simulator. Comprehensive simulations are conducted using a model of Singapore for the year 2030 and yield insights into the impacts of AMOD in dense transit-dependent cities from the perspective of the transportation planner, fleet operator, and user. The findings suggest that an unregulated introduction of AMOD can cause significant increases in network congestion and VKT, and have important policy implications that could potentially inform future deployments of AMOD.

Suggested Citation

  • Oh, Simon & Seshadri, Ravi & Azevedo, Carlos Lima & Kumar, Nishant & Basak, Kakali & Ben-Akiva, Moshe, 2020. "Assessing the impacts of automated mobility-on-demand through agent-based simulation: A study of Singapore," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 367-388.
  • Handle: RePEc:eee:transa:v:138:y:2020:i:c:p:367-388
    DOI: 10.1016/j.tra.2020.06.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856420306133
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2020.06.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shen, Yu & Zhang, Hongmou & Zhao, Jinhua, 2018. "Integrating shared autonomous vehicle in public transportation system: A supply-side simulation of the first-mile service in Singapore," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 125-136.
    2. M. M. Vazifeh & P. Santi & G. Resta & S. H. Strogatz & C. Ratti, 2018. "Addressing the minimum fleet problem in on-demand urban mobility," Nature, Nature, vol. 557(7706), pages 534-538, May.
    3. Rayle, Lisa & Dai, Danielle & Chan, Nelson & Cervero, Robert & Shaheen, Susan PhD, 2016. "Just A Better Taxi? A Survey-Based Comparison of Taxis, Transit, and Ridesourcing Services in San Francisco," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt60v8r346, Institute of Transportation Studies, UC Berkeley.
    4. Daniel J. Fagnant & Kara M. Kockelman, 2018. "Dynamic ride-sharing and fleet sizing for a system of shared autonomous vehicles in Austin, Texas," Transportation, Springer, vol. 45(1), pages 143-158, January.
    5. Rayle, Lisa & Dai, Danielle & Chan, Nelson & Cervero, Robert & Shaheen, Susan, 2016. "Just a better taxi? A survey-based comparison of taxis, transit, and ridesourcing services in San Francisco," Transport Policy, Elsevier, vol. 45(C), pages 168-178.
    6. John Rose & David Hensher, 2014. "Demand for taxi services: new elasticity evidence," Transportation, Springer, vol. 41(4), pages 717-743, July.
    7. Fagnant, Daniel J. & Kockelman, Kara, 2015. "Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 167-181.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Senlei & Correia, Gonçalo Homem de Almeida & Lin, Hai Xiang, 2022. "Modeling the competition between multiple Automated Mobility on-Demand operators: An agent-based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    2. Calabrò, Giovanni & Araldo, Andrea & Oh, Simon & Seshadri, Ravi & Inturri, Giuseppe & Ben-Akiva, Moshe, 2023. "Adaptive transit design: Optimizing fixed and demand responsive multi-modal transportation via continuous approximation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 171(C).
    3. Mehdizadeh, Milad & Nordfjaern, Trond & Klöckner, Christian A., 2022. "A systematic review of the agent-based modelling/simulation paradigm in mobility transition," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    4. Rich, Jeppe & Seshadri, Ravi & Jomeh, Ali Jamal & Clausen, Sofus Rasmus, 2023. "Fixed routing or demand-responsive? Agent-based modelling of autonomous first and last mile services in light-rail systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    5. Aggelos Soteropoulos & Martin Berger & Mathias Mitteregger, 2021. "Compatibility of Automated Vehicles in Street Spaces: Considerations for a Sustainable Implementation," Sustainability, MDPI, vol. 13(5), pages 1-32, March.
    6. Nahmias-Biran, Bat-hen & Oke, Jimi B. & Kumar, Nishant, 2021. "Who benefits from AVs? Equity implications of automated vehicles policies in full-scale prototype cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 92-107.
    7. Tamakloe, Reuben & Park, Dongjoo, 2023. "Discovering latent topics and trends in autonomous vehicle-related research: A structural topic modelling approach," Transport Policy, Elsevier, vol. 139(C), pages 1-20.
    8. Nguyen-Phuoc, Duy Q. & Zhou, Meng & Hong Chua, Ming & Romano Alho, André & Oh, Simon & Seshadri, Ravi & Le, Diem-Trinh, 2023. "Examining the effects of Automated Mobility-on-Demand services on public transport systems using an agent-based simulation approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    9. Mori, Kentaro & Miwa, Tomio & Abe, Ryosuke & Morikawa, Takayuki, 2022. "Equilibrium analysis of trip demand for autonomous taxi services in Nagoya, Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 476-498.
    10. Jihane El Ouadi & Hanae Errousso & Nicolas Malhene & Siham Benhadou, 2022. "On understanding the impacts of shared public transportation on urban traffic and road safety using an agent-based simulation with heterogeneous fleets: a case study of Casablanca city," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(6), pages 3893-3932, December.
    11. Di Ao & Jing Gao & Zhijie Lai & Sen Li, 2021. "Regulating Transportation Network Companies with a Mixture of Autonomous Vehicles and For-Hire Human Drivers," Papers 2112.07218, arXiv.org, revised Dec 2023.
    12. Borge-Diez, David & Icaza, Daniel & Açıkkalp, Emin & Amaris, Hortensia, 2021. "Combined vehicle to building (V2B) and vehicle to home (V2H) strategy to increase electric vehicle market share," Energy, Elsevier, vol. 237(C).
    13. Giovanni Calabro' & Andrea Araldo & Simon Oh & Ravi Seshadri & Giuseppe Inturri & Moshe Ben-Akiva, 2021. "Adaptive Transit Design: Optimizing Fixed and Demand Responsive Multi-Modal Transportation via Continuous Approximation," Papers 2112.14748, arXiv.org, revised Jan 2023.
    14. Peiyu Jing & Ravi Seshadri & Takanori Sakai & Ali Shamshiripour & Andre Romano Alho & Antonios Lentzakis & Moshe E. Ben-Akiva, 2023. "Evaluating congestion pricing schemes using agent-based passenger and freight microsimulation," Papers 2305.07318, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vij, Akshay & Ryan, Stacey & Sampson, Spring & Harris, Susan, 2020. "Consumer preferences for on-demand transport in Australia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 823-839.
    2. Dean, Matthew D. & Kockelman, Kara M., 2021. "Spatial variation in shared ride-hail trip demand and factors contributing to sharing: Lessons from Chicago," Journal of Transport Geography, Elsevier, vol. 91(C).
    3. Cortina, Mélanie & Chiabaut, Nicolas & Leclercq, Ludovic, 2023. "Fostering synergy between transit and Autonomous Mobility-on-Demand systems: A dynamic modeling approach for the morning commute problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    4. Xu, Zhengtian & Yin, Yafeng & Zha, Liteng, 2017. "Optimal parking provision for ride-sourcing services," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 559-578.
    5. Zhang, Yufeng & Khani, Alireza, 2021. "Integrating transit systems with ride-sourcing services: A study on the system users’ stochastic equilibrium problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 95-123.
    6. Tang, Zhe-Yi & Tian, Li-Jun & Wang, David Z.W., 2021. "Multi-modal morning commute with endogenous shared autonomous vehicle penetration considering parking space constraint," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    7. Schaller, Bruce, 2021. "Can sharing a ride make for less traffic? Evidence from Uber and Lyft and implications for cities," Transport Policy, Elsevier, vol. 102(C), pages 1-10.
    8. Kassens-Noor, Eva & Dake, Dana & Decaminada, Travis & Kotval-K, Zeenat & Qu, Teresa & Wilson, Mark & Pentland, Brian, 2020. "Sociomobility of the 21st century: Autonomous vehicles, planning, and the future city," Transport Policy, Elsevier, vol. 99(C), pages 329-335.
    9. Andres Fielbaum & Alejandro Tirachini & Javier Alonso-Mora, 2021. "New sources of economies and diseconomies of scale in on-demand ridepooling systems and comparison with public transport," Papers 2106.15270, arXiv.org, revised Jul 2021.
    10. Kang, Di & Levin, Michael W., 2021. "Maximum-stability dispatch policy for shared autonomous vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 148(C), pages 132-151.
    11. Levin, Michael W., 2022. "A general maximum-stability dispatch policy for shared autonomous vehicle dispatch with an analytical characterization of the maximum throughput," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 258-280.
    12. Soria, Jason & Stathopoulos, Amanda, 2021. "Investigating socio-spatial differences between solo ridehailing and pooled rides in diverse communities," Journal of Transport Geography, Elsevier, vol. 95(C).
    13. Wadud, Zia, 2020. "The effects of e-ridehailing on motorcycle ownership in an emerging-country megacity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 301-312.
    14. Gurumurthy, Krishna Murthy & Kockelman, Kara M., 2021. "Impacts of shared automated vehicles on airport access and operations, with opportunities for revenue recovery: Case Study of Austin, Texas," Research in Transportation Economics, Elsevier, vol. 90(C).
    15. Vignon, Daniel & Yin, Yafeng & Ke, Jintao, 2023. "Regulating the ride-hailing market in the age of uberization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    16. Zgheib, Najib & Abou-Zeid, Maya & Kaysi, Isam, 2020. "Modeling demand for ridesourcing as feeder for high capacity mass transit systems with an application to the planned Beirut BRT," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 70-91.
    17. Yu, Haitao & Peng, Zhong-Ren, 2019. "Exploring the spatial variation of ridesourcing demand and its relationship to built environment and socioeconomic factors with the geographically weighted Poisson regression," Journal of Transport Geography, Elsevier, vol. 75(C), pages 147-163.
    18. Li, Dun & Huang, Youlin & Qian, Lixian, 2022. "Potential adoption of robotaxi service: The roles of perceived benefits to multiple stakeholders and environmental awareness," Transport Policy, Elsevier, vol. 126(C), pages 120-135.
    19. Nguyen-Phuoc, Duy Quy & Vo, Nguyen S. & Su, Diep Ngoc & Nguyen, Vinh Hoang & Oviedo-Trespalacios, Oscar, 2021. "What makes passengers continue using and talking positively about ride-hailing services? The role of the booking app and post-booking service quality," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 367-384.
    20. Di, Yining & Xu, Meng & Zhu, Zheng & Yang, Hai & Chen, Xiqun, 2022. "Analysis of ride-sourcing drivers' working Pattern(s) via spatiotemporal work slices: A case study in Hangzhou," Transport Policy, Elsevier, vol. 125(C), pages 336-351.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:138:y:2020:i:c:p:367-388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.