IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v192y2025ics0965856424004208.html
   My bibliography  Save this article

A simulation-based framework for quantifying potential demand loss due to operational constraints in automated mobility services

Author

Listed:
  • Agriesti, Serio
  • Roncoli, Claudio
  • Nahmias-Biran, Bat-hen

Abstract

Automated vehicles are key to unlock a more widespread on-demand service, increasing accessibility also in peripheral areas of large cities. To evaluate how the performance of these services may affect the overall demand in return, multiple dimensions of the transport problem have to be considered. Indeed, despite people may be willing to use Automated Mobility On-Demand (i.e., generating a potential demand for the service), they may be less willing to consistently replace their other travel options if they, for example, experience high waiting times (determined by the performance of the service, i.e., the supply). In this study, we propose a simulation-based framework developed by integrating an activity-based and a dynamic traffic assignment model, designed to frame absorbed and lost demand at a disaggregated level. This allows capturing how the effects of network congestion and fleet constraints may cause a certain portion of the demand to shift to traditional modes of transportation, thus improving, for example, the accuracy of business cases for mobility service design or of hidden patterns of inequality for policymakers and public authorities.

Suggested Citation

  • Agriesti, Serio & Roncoli, Claudio & Nahmias-Biran, Bat-hen, 2025. "A simulation-based framework for quantifying potential demand loss due to operational constraints in automated mobility services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:transa:v:192:y:2025:i:c:s0965856424004208
    DOI: 10.1016/j.tra.2024.104372
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856424004208
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2024.104372?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sweet, Richard John, 1997. "An aggregate measure of travel utility," Transportation Research Part B: Methodological, Elsevier, vol. 31(5), pages 403-416, October.
    2. Jordi Casas & Jaime L. Ferrer & David Garcia & Josep Perarnau & Alex Torday, 2010. "Traffic Simulation with Aimsun," International Series in Operations Research & Management Science, in: Jaume Barceló (ed.), Fundamentals of Traffic Simulation, chapter 0, pages 173-232, Springer.
    3. Rafał Kucharski & Oded Cats, 2022. "Simulating two-sided mobility platforms with MaaSSim," PLOS ONE, Public Library of Science, vol. 17(6), pages 1-20, June.
    4. Daniel J. Fagnant & Kara M. Kockelman, 2018. "Dynamic ride-sharing and fleet sizing for a system of shared autonomous vehicles in Austin, Texas," Transportation, Springer, vol. 45(1), pages 143-158, January.
    5. Hyland, Michael & Mahmassani, Hani S., 2020. "Operational benefits and challenges of shared-ride automated mobility-on-demand services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 251-270.
    6. Aggelos Soteropoulos & Martin Berger & Francesco Ciari, 2019. "Impacts of automated vehicles on travel behaviour and land use: an international review of modelling studies," Transport Reviews, Taylor & Francis Journals, vol. 39(1), pages 29-49, January.
    7. Bat-Hen Nahmias-Biran & Gabriel Dadashev & Yedidya Levi, 2023. "Sustainable Automated Mobility-On-Demand Strategies in Dense Urban Areas: A Case Study of the Tel Aviv Metropolis in 2040," Sustainability, MDPI, vol. 15(22), pages 1-19, November.
    8. Oke, Jimi B. & Akkinepally, Arun Prakash & Chen, Siyu & Xie, Yifei & Aboutaleb, Youssef M. & Azevedo, Carlos Lima & Zegras, P. Christopher & Ferreira, Joseph & Ben-Akiva, Moshe, 2020. "Evaluating the systemic effects of automated mobility-on-demand services via large-scale agent-based simulation of auto-dependent prototype cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 140(C), pages 98-126.
    9. Nahmias-Biran, Bat-hen & Oke, Jimi B. & Kumar, Nishant, 2021. "Who benefits from AVs? Equity implications of automated vehicles policies in full-scale prototype cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 92-107.
    10. Djavadian, Shadi & Chow, Joseph Y.J., 2017. "An agent-based day-to-day adjustment process for modeling ‘Mobility as a Service’ with a two-sided flexible transport market," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 36-57.
    11. Richter, Maximilian A. & Hagenmaier, Markus & Bandte, Oliver & Parida, Vinit & Wincent, Joakim, 2022. "Smart cities, urban mobility and autonomous vehicles: How different cities needs different sustainable investment strategies," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    12. Oh, Simon & Seshadri, Ravi & Azevedo, Carlos Lima & Kumar, Nishant & Basak, Kakali & Ben-Akiva, Moshe, 2020. "Assessing the impacts of automated mobility-on-demand through agent-based simulation: A study of Singapore," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 367-388.
    13. Nourinejad, Mehdi & Ramezani, Mohsen, 2020. "Ride-Sourcing modeling and pricing in non-equilibrium two-sided markets," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 340-357.
    14. Pau Segui-Gasco & Haris Ballis & Vittoria Parisi & David G. Kelsall & Robin J. North & Didac Busquets, 2019. "Simulating a rich ride-share mobility service using agent-based models," Transportation, Springer, vol. 46(6), pages 2041-2062, December.
    15. Rath, Srushti & Liu, Bingqing & Yoon, Gyugeun & Chow, Joseph Y.J., 2023. "Microtransit deployment portfolio management using simulation-based scenario data upscaling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    16. Rodier, Caroline & Jaller, Miguel & Pourrahmani, Elham & Bischoff, Joschka & Freedman, Joel & Pahwa, Anmol, 2018. "Automated Vehicle Scenarios: Simulation of System-Level Travel Effects Using Agent-Based Demand and Supply Models in the San Francisco Bay Area," Institute of Transportation Studies, Working Paper Series qt4dk3n531, Institute of Transportation Studies, UC Davis.
    17. Bat-hen Nahmias-Biran & Jimi B. Oke & Nishant Kumar & Carlos Lima Azevedo & Moshe Ben-Akiva, 2021. "Evaluating the impacts of shared automated mobility on-demand services: an activity-based accessibility approach," Transportation, Springer, vol. 48(4), pages 1613-1638, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehdizadeh, Milad & Nordfjaern, Trond & Klöckner, Christian A., 2022. "A systematic review of the agent-based modelling/simulation paradigm in mobility transition," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    2. Mori, Kentaro & Miwa, Tomio & Abe, Ryosuke & Morikawa, Takayuki, 2022. "Equilibrium analysis of trip demand for autonomous taxi services in Nagoya, Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 476-498.
    3. Nguyen-Phuoc, Duy Q. & Zhou, Meng & Hong Chua, Ming & Romano Alho, André & Oh, Simon & Seshadri, Ravi & Le, Diem-Trinh, 2023. "Examining the effects of Automated Mobility-on-Demand services on public transport systems using an agent-based simulation approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    4. Li, Dun & Huang, Youlin & Qian, Lixian, 2022. "Potential adoption of robotaxi service: The roles of perceived benefits to multiple stakeholders and environmental awareness," Transport Policy, Elsevier, vol. 126(C), pages 120-135.
    5. Wang, Senlei & Correia, Gonçalo Homem de Almeida & Lin, Hai Xiang, 2022. "Modeling the competition between multiple Automated Mobility on-Demand operators: An agent-based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    6. Saeed, Tariq Usman & Burris, Mark W. & Labi, Samuel & Sinha, Kumares C., 2020. "An empirical discourse on forecasting the use of autonomous vehicles using consumers’ preferences," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    7. Liu, Zhiyong & Li, Ruimin & Dai, Jingchen, 2022. "Effects and feasibility of shared mobility with shared autonomous vehicles: An investigation based on data-driven modeling approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 156(C), pages 206-226.
    8. Luo, Lichen & Parady, Giancarlos & Takami, Kiyoshi, 2024. "Evaluating the impact of automated vehicles on residential location distribution using activity-based accessibility: A case study of Japanese regional areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 190(C).
    9. Jörg Sonnleitner & Markus Friedrich & Emely Richter, 2022. "Impacts of highly automated vehicles on travel demand: macroscopic modeling methods and some results," Transportation, Springer, vol. 49(3), pages 927-950, June.
    10. Nahmias-Biran, Bat-hen & Oke, Jimi B. & Kumar, Nishant, 2021. "Who benefits from AVs? Equity implications of automated vehicles policies in full-scale prototype cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 92-107.
    11. Aggelos Soteropoulos & Martin Berger & Mathias Mitteregger, 2021. "Compatibility of Automated Vehicles in Street Spaces: Considerations for a Sustainable Implementation," Sustainability, MDPI, vol. 13(5), pages 1-32, March.
    12. Anne S. Patricio & Gonçalo Gonçalves Duarte Santos & António Pais Antunes, 2025. "Assessing the introduction of regional driverless demand-responsive transit services through agent-based modeling and simulation," Transportation, Springer, vol. 52(3), pages 1091-1118, June.
    13. Jing, Peiyu & Seshadri, Ravi & Sakai, Takanori & Shamshiripour, Ali & Alho, Andre Romano & Lentzakis, Antonios & Ben-Akiva, Moshe E., 2024. "Evaluating congestion pricing schemes using agent-based passenger and freight microsimulation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 186(C).
    14. Sergei Dytckov & Jan A. Persson & Fabian Lorig & Paul Davidsson, 2022. "Potential Benefits of Demand Responsive Transport in Rural Areas: A Simulation Study in Lolland, Denmark," Sustainability, MDPI, vol. 14(6), pages 1-21, March.
    15. Cui, Hongjun & Yang, Yizhe & Zhu, Minqing & Ma, Xinwei & Chen, Xiuyong & Qie, Binghui, 2023. "The scheduling methods with different demand priorities for shared autonomous vehicle system in hybrid demands mode considering dynamic travel time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    16. Anastasia Roukouni & Gonçalo Homem de Almeida Correia, 2020. "Evaluation Methods for the Impacts of Shared Mobility: Classification and Critical Review," Sustainability, MDPI, vol. 12(24), pages 1-22, December.
    17. Xi, Haoning & Aussel, Didier & Liu, Wei & Waller, S.Travis. & Rey, David, 2024. "Single-leader multi-follower games for the regulation of two-sided mobility-as-a-service markets," European Journal of Operational Research, Elsevier, vol. 317(3), pages 718-736.
    18. Nadafianshahamabadi, Razieh & Tayarani, Mohammad & Rowangould, Gregory, 2021. "A closer look at urban development under the emergence of autonomous vehicles: Traffic, land use and air quality impacts," Journal of Transport Geography, Elsevier, vol. 94(C).
    19. Luca Staricco & Valentina Rappazzo & Jacopo Scudellari & Elisabetta Vitale Brovarone, 2019. "Toward Policies to Manage the Impacts of Autonomous Vehicles on the City: A Visioning Exercise," Sustainability, MDPI, vol. 11(19), pages 1-21, September.
    20. Alberto Dianin & Michael Gidam & Georg Hauger, 2024. "What can be done with today’s budget and demand? Scenarios of rural public transport automation in Mühlwald (South Tyrol)," Public Transport, Springer, vol. 16(1), pages 295-332, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:192:y:2025:i:c:s0965856424004208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.