IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v171y2025icp28-49.html

Simulation based pre-implementation cost evaluation framework for integrated public transit services

Author

Listed:
  • Aravind, Avani
  • Venthuruthiyil, Suvin P.
  • Mishra, Sabya
  • Brakewood, Candace

Abstract

The growing demand for integrated and shared mobility services has resulted in a number of public–private partnerships, where public transit agencies and mobility companies collaborate to expand transit service coverage. Nonetheless, many collaborative efforts have failed due to financial restraints and low ridership. The failure of many of the integrated systems can be ascribed to the ineffective pre-implementation evaluation of the integrated system. The lack of a reliable performance evaluation tool capable of assessing the integrated system’s performance prior to implementation could be the case of such failures. Considering this gap, this paper proposes a support tool for decision process of multimodal integrated transport system that examines the viability of an integrated mobility service system comprised of a Fixed Route Transit (FRT) service system and on-demand services. The decision process is powered by an agent-based simulation framework that tests scenarios covering various modal integration strategies. The on-demand services could be Demand Response Transit (DRT) and Transportation Network Company (TNC) services, that particularly act as feeders for FRT to ensure first and last-mile connectivity. This study proposes four integration-strategies with ten potential integration scenarios and four non-integration scenarios, comprising a total of fourteen possible scenarios to complete a trip between any origin–destination pair. Using the agent-based simulation model, various scenarios can be constructed for origin–destination pairs, and based on the generalized system cost, the preferred integration strategy can be selected. The proposed model analyzed the generalized system cost for each scenario by incorporating three key cost components: user cost, agency cost, and external costs. The proposed method was implemented on two different networks, which are the Sioux Falls network and a real-world case study of the Morristown city network in Tennessee, United States. Simulation outcomes indicate that 69% of trips in the Sioux Falls network and 73% of trips in Morristown could be connected to the existing FRT network using feeder services as first and last-mile connectivity solutions. The results suggest that a properly evaluated integrated system could enhance the accessibility of FRT significantly. Therefore, the proposed methodology assesses the advantages of the integrated system prior to its implementation, assisting transit planners and policymakers in the efficient execution of integration strategies and enhancing user experience and mobility.

Suggested Citation

  • Aravind, Avani & Venthuruthiyil, Suvin P. & Mishra, Sabya & Brakewood, Candace, 2025. "Simulation based pre-implementation cost evaluation framework for integrated public transit services," Transport Policy, Elsevier, vol. 171(C), pages 28-49.
  • Handle: RePEc:eee:trapol:v:171:y:2025:i:c:p:28-49
    DOI: 10.1016/j.tranpol.2025.05.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X25001817
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2025.05.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Kaddoura, Ihab & Nagel, Kai, 2019. "Congestion pricing in a real-world oriented agent-based simulation context," Research in Transportation Economics, Elsevier, vol. 74(C), pages 40-51.
    2. Jonn Axsen & Patrick Plötz & Michael Wolinetz, 2020. "Crafting strong, integrated policy mixes for deep CO2 mitigation in road transport," Nature Climate Change, Nature, vol. 10(9), pages 809-818, September.
    3. Vincent A.C. van den Berg & Henk Meurs & Erik T. Verhoef, 2022. "Business models for Mobility as an Service," Tinbergen Institute Discussion Papers 22-002/VIII, Tinbergen Institute.
    4. Lee, Enoch & Cen, Xuekai & Lo, Hong K., 2021. "Zonal-based flexible bus service under elastic stochastic demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    5. Tarduno, Matthew, 2021. "The congestion costs of Uber and Lyft," Journal of Urban Economics, Elsevier, vol. 122(C).
    6. Welch, Timothy F. & Mishra, Sabyasachee, 2013. "A measure of equity for public transit connectivity," Journal of Transport Geography, Elsevier, vol. 33(C), pages 29-41.
    7. Quadrifoglio, Luca & Li, Xiugang, 2009. "A methodology to derive the critical demand density for designing and operating feeder transit services," Transportation Research Part B: Methodological, Elsevier, vol. 43(10), pages 922-935, December.
    8. Daganzo, Carlos F., 2010. "Structure of competitive transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 434-446, May.
    9. Sangveraphunsiri, Tawit & Cassidy, Michael J. & Daganzo, Carlos F., 2022. "Jitney-lite: a flexible-route feeder service for developing countries," Transportation Research Part B: Methodological, Elsevier, vol. 156(C), pages 1-13.
    10. Rahimi, Mahour & Amirgholy, Mahyar & Gonzales, Eric J., 2018. "System modeling of demand responsive transportation services: Evaluating cost efficiency of service and coordinated taxi usage," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 112(C), pages 66-83.
    11. Calabrò, Giovanni & Araldo, Andrea & Oh, Simon & Seshadri, Ravi & Inturri, Giuseppe & Ben-Akiva, Moshe, 2023. "Adaptive transit design: Optimizing fixed and demand responsive multi-modal transportation via continuous approximation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 171(C).
    12. Mishra, Sabyasachee & Welch, Timothy F. & Jha, Manoj K., 2012. "Performance indicators for public transit connectivity in multi-modal transportation networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(7), pages 1066-1085.
    13. Itani, Alaa & Klumpenhouwer, Willem & Shalaby, Amer & Hemily, Brendon, 2024. "Guiding principles for integrating on-demand transit into conventional transit networks: A review of literature and practice," Transport Policy, Elsevier, vol. 147(C), pages 183-197.
    14. Babak Mehran & Yongzhe Yang & Sushreeta Mishra, 2020. "Analytical models for comparing operational costs of regular bus and semi-flexible transit services," Public Transport, Springer, vol. 12(1), pages 147-169, March.
    15. Shen, Yu & Zhang, Hongmou & Zhao, Jinhua, 2018. "Integrating shared autonomous vehicle in public transportation system: A supply-side simulation of the first-mile service in Singapore," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 125-136.
    16. Giovanni Calabro' & Andrea Araldo & Simon Oh & Ravi Seshadri & Giuseppe Inturri & Moshe Ben-Akiva, 2021. "Adaptive Transit Design: Optimizing Fixed and Demand Responsive Multi-Modal Transportation via Continuous Approximation," Papers 2112.14748, arXiv.org, revised Jan 2023.
    17. Le Pira, Michela & Inturri, Giuseppe & Ignaccolo, Matteo & Pluchino, Alessandro & Rapisarda, Andrea, 2017. "Finding shared decisions in stakeholder networks: An agent-based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 277-287.
    18. Pantelidis, Theodoros P. & Chow, Joseph Y.J. & Rasulkhani, Saeid, 2020. "A many-to-many assignment game and stable outcome algorithm to evaluate collaborative mobility-as-a-service platforms," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 79-100.
    19. Inturri, Giuseppe & Le Pira, Michela & Giuffrida, Nadia & Ignaccolo, Matteo & Pluchino, Alessandro & Rapisarda, Andrea & D'Angelo, Riccardo, 2019. "Multi-agent simulation for planning and designing new shared mobility services," Research in Transportation Economics, Elsevier, vol. 73(C), pages 34-44.
    20. Ma, Tai-Yu & Rasulkhani, Saeid & Chow, Joseph Y.J. & Klein, Sylvain, 2019. "A dynamic ridesharing dispatch and idle vehicle repositioning strategy with integrated transit transfers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 417-442.
    21. Hiroaki Nishiuchi & Kohei Nishimura & An Minh Ngoc & Charitha Dias, 2024. "Identifying the relationship between intention to use flat-rate public transport and trip frequency by a discrete-continuous model," Public Transport, Springer, vol. 16(2), pages 485-504, June.
    22. van den Berg, Vincent A.C. & Meurs, Henk & Verhoef, Erik T., 2022. "Business models for Mobility as an Service (MaaS)," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 203-229.
    23. Hensher, David A., 2017. "Future bus transport contracts under a mobility as a service (MaaS) regime in the digital age: Are they likely to change?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 98(C), pages 86-96.
    24. Theodoros P. Pantelidis & Joseph Y. J. Chow & Saeid Rasulkhani, 2019. "A many-to-many assignment game and stable outcome algorithm to evaluate collaborative Mobility-as-a-Service platforms," Papers 1911.04435, arXiv.org, revised Jun 2020.
    25. Zhu, Zheng & Qin, Xiaoran & Ke, Jintao & Zheng, Zhengfei & Yang, Hai, 2020. "Analysis of multi-modal commute behavior with feeding and competing ridesplitting services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 713-727.
    26. Oh, Simon & Seshadri, Ravi & Azevedo, Carlos Lima & Kumar, Nishant & Basak, Kakali & Ben-Akiva, Moshe, 2020. "Assessing the impacts of automated mobility-on-demand through agent-based simulation: A study of Singapore," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 367-388.
    27. Zhu, Zheng & Xu, Ailing & He, Qiao-Chu & Yang, Hai, 2021. "Competition between the transportation network company and the government with subsidies to public transit riders," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    28. Aravind, Avani & Venthuruthiyil, Suvin P. & Mishra, Sabyasachee, 2024. "Equity and accessibility assessment of fixed route transit systems integrated with on-demand feeder services," Journal of Transport Geography, Elsevier, vol. 121(C).
    29. Shaheen, Susan & Cohen, Adam, 2020. "Chapter 3 - Mobility on demand (MOD) and mobility as a service (MaaS): early understanding of shared mobility impacts and public transit partnerships," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt5030f0cd, Institute of Transportation Studies, UC Berkeley.
    30. Polydoropoulou, Amalia & Pagoni, Ioanna & Tsirimpa, Athena & Roumboutsos, Athena & Kamargianni, Maria & Tsouros, Ioannis, 2020. "Prototype business models for Mobility-as-a-Service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 149-162.
    31. Brian Taylor & Eric Morris, 2015. "Public transportation objectives and rider demographics: are transit’s priorities poor public policy?," Transportation, Springer, vol. 42(2), pages 347-367, March.
    32. Cláudia A. Soares Machado & Nicolas Patrick Marie De Salles Hue & Fernando Tobal Berssaneti & José Alberto Quintanilha, 2018. "An Overview of Shared Mobility," Sustainability, MDPI, vol. 10(12), pages 1-21, November.
    33. Gössling, Stefan & Kees, Jessica & Litman, Todd, 2022. "The lifetime cost of driving a car," Ecological Economics, Elsevier, vol. 194(C).
    34. Sultana, Zohora & Mishra, Sabyasachee & Cherry, Christopher R. & Golias, Mihalis M. & Tabrizizadeh Jeffers, Saman, 2018. "Modeling frequency of rural demand response transit trips," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 494-505.
    35. Tang, Xindi & Yang, Jie & Lin, Xi & He, Fang & Si, Jinhua, 2023. "Dynamic operations of an integrated mobility service system of fixed-route transits and flexible electric buses," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    36. Sharma, Ishant & Mishra, Sabyasachee & Golias, Mihalis M. & Welch, Timothy F. & Cherry, Christopher R., 2020. "Equity of transit connectivity in Tennessee cities," Journal of Transport Geography, Elsevier, vol. 86(C).
    37. Aldaihani, Majid M. & Quadrifoglio, Luca & Dessouky, Maged M. & Hall, Randolph, 2004. "Network design for a grid hybrid transit service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(7), pages 511-530, August.
    38. Bing-Zheng Liu & Ying-En Ge & Kai Cao & Xi Jiang & Lingyun Meng & Ding Liu & Yunfeng Gao, 2017. "Optimizing a desirable fare structure for a bus-subway corridor," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-21, October.
    39. Mulley, Corinne & Ho, Chinh & Ho, Loan & Hensher, David & Rose, John, 2018. "Will bus travellers walk further for a more frequent service? An international study using a stated preference approach," Transport Policy, Elsevier, vol. 69(C), pages 88-97.
    40. Marcucci, Edoardo & Le Pira, Michela & Gatta, Valerio & Inturri, Giuseppe & Ignaccolo, Matteo & Pluchino, Alessandro, 2017. "Simulating participatory urban freight transport policy-making: Accounting for heterogeneous stakeholders’ preferences and interaction effects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 69-86.
    41. Nadia Giuffrida & Michela Le Pira & Giuseppe Inturri & Matteo Ignaccolo & Giovanni Calabrò & Blochin Cuius & Riccardo D’Angelo & Alessandro Pluchino, 2020. "On-Demand Flexible Transit in Fast-Growing Cities: The Case of Dubai," Sustainability, MDPI, vol. 12(11), pages 1-15, May.
    42. Ho, Chinh Q. & Tirachini, Alejandro, 2024. "Mobility-as-a-Service and the role of multimodality in the sustainability of urban mobility in developing and developed countries," Transport Policy, Elsevier, vol. 145(C), pages 161-176.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aravind, Avani & Venthuruthiyil, Suvin P. & Mishra, Sabyasachee, 2024. "Equity and accessibility assessment of fixed route transit systems integrated with on-demand feeder services," Journal of Transport Geography, Elsevier, vol. 121(C).
    2. Calabrò, Giovanni & Araldo, Andrea & Oh, Simon & Seshadri, Ravi & Inturri, Giuseppe & Ben-Akiva, Moshe, 2023. "Adaptive transit design: Optimizing fixed and demand responsive multi-modal transportation via continuous approximation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 171(C).
    3. Rich, Jeppe & Seshadri, Ravi & Jomeh, Ali Jamal & Clausen, Sofus Rasmus, 2023. "Fixed routing or demand-responsive? Agent-based modelling of autonomous first and last mile services in light-rail systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    4. Liu, Yining & Ouyang, Yanfeng, 2021. "Mobility service design via joint optimization of transit networks and demand-responsive services," Transportation Research Part B: Methodological, Elsevier, vol. 151(C), pages 22-41.
    5. Wang, Yineng & Lin, Xi & He, Fang & Li, Meng, 2022. "Designing transit-oriented multi-modal transportation systems considering travelers’ choices," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 292-327.
    6. Fan, Wenbo & Gu, Weihua & Xu, Meng, 2024. "Optimal design of ride-pooling as on-demand feeder services," Transportation Research Part B: Methodological, Elsevier, vol. 185(C).
    7. Pan, Manlian & Sun, Xiaotong, 2024. "Exploring the role of Mobility-as-a-Service in morning commuting trips," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).
    8. Huang, Wentao & Jian, Sisi, 2025. "Unveiling coopetition dynamics between shared mobility and public transport: A game-theoretic approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 193(C).
    9. Fielbaum, Andres & Tirachini, Alejandro & Alonso-Mora, Javier, 2024. "Improving public transportation via line-based integration of on-demand ridepooling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 190(C).
    10. Ding, Xiaoshu & Qi, Qi & Jian, Sisi & Yang, Hai, 2023. "Mechanism design for Mobility-as-a-Service platform considering travelers’ strategic behavior and multidimensional requirements," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 1-30.
    11. Sharma, Ishant & Mishra, Sabyasachee & Golias, Mihalis M. & Welch, Timothy F. & Cherry, Christopher R., 2020. "Equity of transit connectivity in Tennessee cities," Journal of Transport Geography, Elsevier, vol. 86(C).
    12. Tang, Xindi & Yang, Jie & Lin, Xi & He, Fang & Si, Jinhua, 2023. "Dynamic operations of an integrated mobility service system of fixed-route transits and flexible electric buses," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    13. Zhen, Li & Gu, Weihua, 2024. "Feeder bus service design under spatially heterogeneous demand," Transportation Research Part A: Policy and Practice, Elsevier, vol. 189(C).
    14. Giovanni Calabro' & Andrea Araldo & Simon Oh & Ravi Seshadri & Giuseppe Inturri & Moshe Ben-Akiva, 2021. "Adaptive Transit Design: Optimizing Fixed and Demand Responsive Multi-Modal Transportation via Continuous Approximation," Papers 2112.14748, arXiv.org, revised Jan 2023.
    15. Gong, Manlin & Hu, Yucong & Chen, Zhiwei & Li, Xiaopeng, 2021. "Transfer-based customized modular bus system design with passenger-route assignment optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    16. van den Berg, Vincent A.C. & Meurs, Henk & Verhoef, Erik T., 2022. "Business models for Mobility as an Service (MaaS)," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 203-229.
    17. Huang, Wentao & Jian, Sisi & Rey, David, 2024. "Non-additive network pricing with non-cooperative mobility service providers," European Journal of Operational Research, Elsevier, vol. 318(3), pages 802-824.
    18. Nikitas, Alexandros & Cotet, Corneliu & Vitel, Alexandra-Elena & Nikitas, Nikolaos & Prato, Carlo, 2024. "Transport stakeholders’ perceptions of Mobility-as-a-Service: A Q-study of cultural shift proponents, policy advocates and technology supporters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    19. Andres Fielbaum & Sergio Jara-Díaz & Javier Alonso-Mora, 2024. "Beyond the last mile: different spatial strategies to integrate on-demand services into public transport in a simplified city," Public Transport, Springer, vol. 16(3), pages 855-892, October.
    20. Ellegood, William A. & Campbell, James F. & North, Jeremy, 2015. "Continuous approximation models for mixed load school bus routing," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 182-198.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:171:y:2025:i:c:p:28-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.