IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i6p2746-d1616057.html
   My bibliography  Save this article

Spatial Effects of Financial Agglomeration and Green Technological Innovation on Carbon Emissions

Author

Listed:
  • Zhijie Hao

    (Business School, Jiangsu Open University, Nanjing 210036, China)

  • Ziqian Zhao

    (School of Management Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China)

  • Zhiwei Pan

    (School of Management Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China)

  • Decai Tang

    (School of Management Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China)

  • Meiling Zhao

    (Jiangsu Trendy Information Technology Co., Ltd., Nanjing 211800, China)

  • Hui Zhang

    (Jiangsu Trendy Information Technology Co., Ltd., Nanjing 211800, China)

Abstract

Financial agglomeration and green technology innovation are important measures to reduce carbon emissions and promote the development of a green economy. Based on the panel data of 30 provinces and cities in China from 2011 to 2020, this paper uses the locational entropy method and the carbon emission coefficient measurement method provided in the IPCC inventory guide to establish a spatial econometric model to explore the specific impact of financial agglomeration and green technology innovation on carbon emission. The results show that (1) both financial agglomeration and green technology innovation will reduce carbon emissions; (2) when considering the spatial effect, financial agglomeration and green technology innovation will effectively reduce carbon emissions; (3) the influence of financial agglomeration and green technology innovation on carbon emissions has regional heterogeneity. Only green technology innovation can significantly reduce carbon emissions in the eastern region. Financial agglomeration and green technology innovation in the central region can significantly reduce carbon emissions. Financial agglomeration in the western region can significantly reduce carbon emissions, but green technology innovation will lead to an increase in carbon emissions. This paper provides useful suggestions for optimizing the financial industry’s structure, improving the level of green technology, and alleviating environmental pollution.

Suggested Citation

  • Zhijie Hao & Ziqian Zhao & Zhiwei Pan & Decai Tang & Meiling Zhao & Hui Zhang, 2025. "Spatial Effects of Financial Agglomeration and Green Technological Innovation on Carbon Emissions," Sustainability, MDPI, vol. 17(6), pages 1-34, March.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:6:p:2746-:d:1616057
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/6/2746/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/6/2746/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Meng, Yue & Wu, Haoyue & Wang, Yunchen & Duan, Yinying, 2022. "International trade diversification, green innovation, and consumption-based carbon emissions: The role of renewable energy for sustainable development in BRICST countries," Renewable Energy, Elsevier, vol. 198(C), pages 1243-1253.
    2. Kuang, Hewu & Akmal, Zeeshan & Li, Feifei, 2022. "Measuring the effects of green technology innovations and renewable energy investment for reducing carbon emissions in China," Renewable Energy, Elsevier, vol. 197(C), pages 1-10.
    3. Li, Yaya & Zhang, Yun, 2023. "What is the role of green ICT innovation in lowering carbon emissions in China? A provincial-level analysis," Energy Economics, Elsevier, vol. 127(PA).
    4. Zhao, Pengjun & Zeng, Liangen & Li, Peilin & Lu, Haiyan & Hu, Haoyu & Li, Chengming & Zheng, Mengyuan & Li, Haitao & Yu, Zhao & Yuan, Dandan & Xie, Jinxin & Huang, Qi & Qi, Yuting, 2022. "China's transportation sector carbon dioxide emissions efficiency and its influencing factors based on the EBM DEA model with undesirable outputs and spatial Durbin model," Energy, Elsevier, vol. 238(PC).
    5. Lee, Chien-Chiang & Wang, Chang-song & He, Zhiwen & Xing, Wen-wu & Wang, Keying, 2023. "How does green finance affect energy efficiency? The role of green technology innovation and energy structure," Renewable Energy, Elsevier, vol. 219(P1).
    6. Che, Shuai & Wang, Jun & Chen, Honghang, 2023. "Can China's decentralized energy governance reduce carbon emissions? Evidence from new energy demonstration cities," Energy, Elsevier, vol. 284(C).
    7. Xu, Le & Fan, Meiting & Yang, Lili & Shao, Shuai, 2021. "Heterogeneous green innovations and carbon emission performance: Evidence at China's city level," Energy Economics, Elsevier, vol. 99(C).
    8. Zhang, Wei & Li, Guoxiang & Guo, Fanyong, 2022. "Does carbon emissions trading promote green technology innovation in China?," Applied Energy, Elsevier, vol. 315(C).
    9. Yu, Hongyang & Wang, Jinchao & Xu, Jiajun, 2023. "Assessing the role of digital economy agglomeration in energy conservation and emission reduction: Evidence from China," Energy, Elsevier, vol. 284(C).
    10. Chen, Yu & Zhao, Changyi & Chen, Shan & Chen, Wenqing & Wan, Kunyang & Wei, Jia, 2023. "Riding the green rails: Exploring the nexus between high-speed trains, green innovation, and carbon emissions," Energy, Elsevier, vol. 282(C).
    11. Wang, Fayuan & Wang, Rong & He, Zhili, 2021. "The impact of environmental pollution and green finance on the high-quality development of energy based on spatial Dubin model," Resources Policy, Elsevier, vol. 74(C).
    12. Li, Zhaoling & Dai, Hancheng & Sun, Lu & Xie, Yang & Liu, Zhu & Wang, Peng & Yabar, Helmut, 2018. "Exploring the impacts of regional unbalanced carbon tax on CO2 emissions and industrial competitiveness in Liaoning province of China," Energy Policy, Elsevier, vol. 113(C), pages 9-19.
    13. Chen, Huanyu & Yi, Jizheng & Chen, Aibin & Peng, Duanxiang & Yang, Jieqiong, 2023. "Green technology innovation and CO2 emission in China: Evidence from a spatial-temporal analysis and a nonlinear spatial durbin model," Energy Policy, Elsevier, vol. 172(C).
    14. Ling Wei & Bing Zeng, 2025. "Research on the Effects of Carbon Emissions from China’s Technology Transfer: Domestic and International Perspectives," Economies, MDPI, vol. 13(2), pages 1-22, February.
    15. Liao, Kaicheng & Liu, Juan, 2024. "Digital infrastructure empowerment and urban carbon emissions: Evidence from China," Telecommunications Policy, Elsevier, vol. 48(6).
    16. Bai, Ling & Guo, Tianran & Xu, Wei & Liu, Yaobin & Kuang, Ming & Jiang, Lei, 2023. "Effects of digital economy on carbon emission intensity in Chinese cities: A life-cycle theory and the application of non-linear spatial panel smooth transition threshold model," Energy Policy, Elsevier, vol. 183(C).
    17. Zhang, Lin & He, Xiaoxia & Jia, Zhenli, 2023. "Industrial agglomeration, public services and city size: Evidence from 286 cities in China," Land Use Policy, Elsevier, vol. 131(C).
    18. Qu, Chenyao & Shao, Jun & Shi, Zhenkai, 2020. "Does financial agglomeration promote the increase of energy efficiency in China?," Energy Policy, Elsevier, vol. 146(C).
    19. Wang, Yanan & Yin, Shiwen & Fang, Xiaoli & Chen, Wei, 2022. "Interaction of economic agglomeration, energy conservation and emission reduction: Evidence from three major urban agglomerations in China," Energy, Elsevier, vol. 241(C).
    20. Habiba, Umme & Xinbang, Cao & Anwar, Ahsan, 2022. "Do green technology innovations, financial development, and renewable energy use help to curb carbon emissions?," Renewable Energy, Elsevier, vol. 193(C), pages 1082-1093.
    21. Wang, Yafei & Bai, Ying & Quan, Tianshu & Ran, Rong & Hua, Lei, 2023. "Influence and effect of industrial agglomeration on urban green total factor productivity—On the regulatory role of innovation agglomeration and institutional distance," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 1158-1173.
    22. Jun Wan & Chenggang Li & Zhangting Yang & Liang Wu & Mu Yue, 2025. "Dynamic spatial spillover effects of financial agglomeration on CO2 emissions: the case of China," Palgrave Communications, Palgrave Macmillan, vol. 12(1), pages 1-13, December.
    23. Ahmed, Khalid & Rehman, Mujeeb Ur & Ozturk, Ilhan, 2017. "What drives carbon dioxide emissions in the long-run? Evidence from selected South Asian Countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1142-1153.
    24. Razzaq, Asif & Wang, Yufeng & Chupradit, Supat & Suksatan, Wanich & Shahzad, Farrukh, 2021. "Asymmetric inter-linkages between green technology innovation and consumption-based carbon emissions in BRICS countries using quantile-on-quantile framework," Technology in Society, Elsevier, vol. 66(C).
    25. Xu Feng & Xiaowen An & Yahui An & Yajun Xiao, 2024. "Shadow Funding and Economic Growth: Evidence from China," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 56(2-3), pages 589-611, March.
    26. Zhang, Wei & Liu, Xuemeng & Zhao, Shikuan & Tang, Tian, 2024. "Does green finance agglomeration improve carbon emission performance in China? A perspective of spatial spillover," Applied Energy, Elsevier, vol. 358(C).
    27. Xie, Rui & Fu, Wei & Yao, Siling & Zhang, Qi, 2021. "Effects of financial agglomeration on green total factor productivity in Chinese cities: Insights from an empirical spatial Durbin model," Energy Economics, Elsevier, vol. 101(C).
    28. Hong Sun & Wenjing Li & Xue Guo & Ziyue Wu & Zimo Mao & Jun Feng, 2025. "How Does Digital Inclusive Finance Affect Agricultural Green Development? Evidence from Thirty Provinces in China," Sustainability, MDPI, vol. 17(4), pages 1-23, February.
    29. Wu, Linfei & Sun, Liwen & Qi, Peixiao & Ren, Xiangwei & Sun, Xiaoting, 2021. "Energy endowment, industrial structure upgrading, and CO2 emissions in China: Revisiting resource curse in the context of carbon emissions," Resources Policy, Elsevier, vol. 74(C).
    30. Li, Jiajia & Wang, Pengxin & Ma, Shan, 2024. "The impact of different transportation infrastructures on urban carbon emissions: Evidence from China," Energy, Elsevier, vol. 295(C).
    31. Yan, Bin & Wang, Feng & Dong, Mingru & Ren, Jing & Liu, Juan & Shan, Jing, 2022. "How do financial spatial structure and economic agglomeration affect carbon emission intensity? Theory extension and evidence from China," Economic Modelling, Elsevier, vol. 108(C).
    32. Du, Kerui & Li, Pengzhen & Yan, Zheming, 2019. "Do green technology innovations contribute to carbon dioxide emission reduction? Empirical evidence from patent data," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 297-303.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haider Mahmood & Maham Furqan & Najia Saqib & Anass Hamadelneel Adow & Muzaffar Abbas, 2023. "Innovations and the CO 2 Emissions Nexus in the MENA Region: A Spatial Analysis," Sustainability, MDPI, vol. 15(13), pages 1-20, July.
    2. Zhang, Wei & Liu, Xuemeng & Zhao, Shikuan & Tang, Tian, 2024. "Does green finance agglomeration improve carbon emission performance in China? A perspective of spatial spillover," Applied Energy, Elsevier, vol. 358(C).
    3. Zeng, Shihong & Li, Tengfei & Wu, Shaomin & Gao, Weijun & Li, Gen, 2024. "Does green technology progress have a significant impact on carbon dioxide emissions?," Energy Economics, Elsevier, vol. 133(C).
    4. Tian, Lingyue & Chai, Jian & Zhang, Xiaokong & Pan, Yue, 2024. "Spatiotemporal evolution and driving factors of China's carbon footprint pressure: Based on vegetation carbon sequestration and LMDI decomposition," Energy, Elsevier, vol. 310(C).
    5. Lee, Chien-Chiang & Du, Lixia & Wang, Chang-song, 2024. "Carbon blessing or carbon curse? The role of fiscal policy," Economic Analysis and Policy, Elsevier, vol. 83(C), pages 1097-1114.
    6. Wang, Luojia & Du, Kerui & Shao, Shuai, 2024. "Transportation infrastructure and carbon emissions: New evidence with spatial spillover and endogeneity," Energy, Elsevier, vol. 297(C).
    7. Wang, Xiong & Wang, Xiao & Ren, Xiaohang & Wen, Fenghua, 2022. "Can digital financial inclusion affect CO2 emissions of China at the prefecture level? Evidence from a spatial econometric approach," Energy Economics, Elsevier, vol. 109(C).
    8. Lin, Boqiang & Ullah, Sami, 2023. "Towards the goal of going green: Do green growth and innovation matter for environmental sustainability in Pakistan," Energy, Elsevier, vol. 285(C).
    9. Huwei Wen & Runnan Wang & Yuhan Liu, 2024. "Towards Carbon Neutrality in Agglomeration: Impact of Eco-Industry Development on Urban Carbon Emission Efficiency," Sustainability, MDPI, vol. 16(8), pages 1-22, April.
    10. Lin, Boqiang & Ma, Ruiyang, 2022. "Green technology innovations, urban innovation environment and CO2 emission reduction in China: Fresh evidence from a partially linear functional-coefficient panel model," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    11. Chen, Fu & Wang, Liyun & Gu, Qiaojing & Wang, Mingyue & Ding, Xuanwen, 2022. "Nexus between natural resources, financial development, green innovation and environmental sustainability in China: Fresh insight from novel quantile ARDL," Resources Policy, Elsevier, vol. 79(C).
    12. Chen, Xu & Xu, Huilin & Anwar, Sajid, 2024. "Bank competition, government interest in green initiatives and carbon emissions reduction: An empirical analysis using city-level data from China," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
    13. Dong, Hanmin & Zhang, Lin & Zheng, Huanhuan, 2024. "Green bonds: Fueling green innovation or just a fad?," Energy Economics, Elsevier, vol. 135(C).
    14. Fang Qu & Wensen She, 2025. "Artificial Intelligence Technology and Regional Carbon Emission Performance: Does Energy Transition or Industrial Transformation Matter?," Sustainability, MDPI, vol. 17(5), pages 1-31, February.
    15. Lv, Zhaojiang & Chen, Lan & Ali, Syed Ahtsham & Muda, Iskandar & Alromaihi, Abdullah & Boltayev, Jurabek Yusufovich, 2024. "Financial technologies, green technologies and natural resource nexus with sustainable development goals: Evidence from resource abundant economies using MMQR estimation," Resources Policy, Elsevier, vol. 89(C).
    16. Meng, Yue & Wu, Haoyue & Wang, Yunchen & Duan, Yinying, 2022. "International trade diversification, green innovation, and consumption-based carbon emissions: The role of renewable energy for sustainable development in BRICST countries," Renewable Energy, Elsevier, vol. 198(C), pages 1243-1253.
    17. Zhao, Qiuyun & Jiang, Mei & Zhao, Zuoxiang & Liu, Fan & Zhou, Li, 2024. "The impact of green innovation on carbon reduction efficiency in China: Evidence from machine learning validation," Energy Economics, Elsevier, vol. 133(C).
    18. Bai, Dongbei & Hu, Jin & Irfan, Muhammad & Hu, Mingjun, 2023. "Unleashing the impact of ecological civilization pilot policies on green technology innovation: Evidence from a novel SC-DID model," Energy Economics, Elsevier, vol. 125(C).
    19. Song, Aifeng & Rasool, Zeeshan & Nazar, Raima & Anser, Muhammad Khalid, 2024. "Towards a greener future: How green technology innovation and energy efficiency are transforming sustainability," Energy, Elsevier, vol. 290(C).
    20. Zhao, Xin & Nakonieczny, Joanna & Jabeen, Fauzia & Shahzad, Umer & Jia, Wenxing, 2022. "Does green innovation induce green total factor productivity? Novel findings from Chinese city level data," Technological Forecasting and Social Change, Elsevier, vol. 185(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:6:p:2746-:d:1616057. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.