IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i8p3159-d1373081.html
   My bibliography  Save this article

Towards Carbon Neutrality in Agglomeration: Impact of Eco-Industry Development on Urban Carbon Emission Efficiency

Author

Listed:
  • Huwei Wen

    (School of Economics and Management, Nanchang University, Nanchang 330031, China)

  • Runnan Wang

    (School of Qianhu, Nanchang University, Nanchang 330031, China)

  • Yuhan Liu

    (School of Qianhu, Nanchang University, Nanchang 330031, China)

Abstract

Ecological industrial parks (EIPs) play a pivotal role as primary drivers of China’s industrial green transformation, facilitating the enhancement of urban carbon emission efficiency (UCEE) and the realization of green sustainable development. This study empirically investigates the effects of EIP policies on UCEE through quasi-natural experiments, utilizing data from 282 prefecture-level cities in China spanning from 2006 to 2021. Employing a multi-period difference-in-difference (DID) method, the findings are as follows: (1) The implementation of EIP policies leads to a 2.5% average increase in UCEE. (2) Event analysis reveals certain lagging characteristics in the promoting effect of EIP policies on the carbon emission efficiency of pilot cities. (3) EIP construction primarily enhances UCEE by reinforcing agglomeration effects and elevating innovation ability. (4) The promoting effect of EIP construction is more pronounced in the eastern and central regions, as well as in non-resource-based cities within different regions. Drawing from the empirical results, this study provides pertinent recommendations for EIP construction, offering theoretical guidance to policymakers and managers in crafting sustainable development strategies.

Suggested Citation

  • Huwei Wen & Runnan Wang & Yuhan Liu, 2024. "Towards Carbon Neutrality in Agglomeration: Impact of Eco-Industry Development on Urban Carbon Emission Efficiency," Sustainability, MDPI, vol. 16(8), pages 1-22, April.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3159-:d:1373081
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/8/3159/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/8/3159/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Yongji & Lan, Minghui & Zhao, Yapu & Su, Zhi & Hao, Yu & Du, Heran, 2024. "Regional carbon emission pressure and corporate green innovation," Applied Energy, Elsevier, vol. 360(C).
    2. Li, Jia Shuo & Zhou, H.W. & Meng, Jing & Yang, Q. & Chen, B. & Zhang, Y.Y., 2018. "Carbon emissions and their drivers for a typical urban economy from multiple perspectives: A case analysis for Beijing city," Applied Energy, Elsevier, vol. 226(C), pages 1076-1086.
    3. Lozano-Vivas, Ana & Humphrey, David B., 2002. "Bias in Malmquist index and cost function productivity measurement in banking," International Journal of Production Economics, Elsevier, vol. 76(2), pages 177-188, March.
    4. Lee, Chien-Chiang & Zhao, Ya-Nan, 2023. "Heterogeneity analysis of factors influencing CO2 emissions: The role of human capital, urbanization, and FDI," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    5. Zhang, Wei & Liu, Xuemeng & Zhao, Shikuan & Tang, Tian, 2024. "Does green finance agglomeration improve carbon emission performance in China? A perspective of spatial spillover," Applied Energy, Elsevier, vol. 358(C).
    6. Wang, Jianda & Dong, Xiucheng & Dong, Kangyin, 2022. "How does ICT agglomeration affect carbon emissions? The case of Yangtze River Delta urban agglomeration in China," Energy Economics, Elsevier, vol. 111(C).
    7. Yu, Yan-Yan & Liang, Qiao-mei & Liu, Li-Jing, 2023. "Impact of population ageing on carbon emissions: A case of China's urban households," Structural Change and Economic Dynamics, Elsevier, vol. 64(C), pages 86-100.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yilin & Chen, Bin & Li, Chaohui & Li, Zhi & Chen, Guoqian, 2020. "Energy perspective of Sino-US trade imbalance in global supply chains," Energy Economics, Elsevier, vol. 92(C).
    2. Kerstens, Kristiaan & Van de Woestyne, Ignace, 2014. "Comparing Malmquist and Hicks–Moorsteen productivity indices: Exploring the impact of unbalanced vs. balanced panel data," European Journal of Operational Research, Elsevier, vol. 233(3), pages 749-758.
    3. Xi Liu & Yugang He & Renhong Wu, 2024. "Revolutionizing Environmental Sustainability: The Role of Renewable Energy Consumption and Environmental Technologies in OECD Countries," Energies, MDPI, vol. 17(2), pages 1-21, January.
    4. Mario Fortin & André Leclerc, 2011. "L’Efficience Des Cooperatives De Services Financiers: Une Analyse De La Contribution Du Milieu," Annals of Public and Cooperative Economics, Wiley Blackwell, vol. 82(1), pages 45-62, March.
    5. Biyun Chen & Haoying Chen & Yiyi Zhang & Junhui Zhao & Emad Manla, 2019. "Risk Assessment for the Power Grid Dispatching Process Considering the Impact of Cyber Systems," Energies, MDPI, vol. 12(6), pages 1-18, March.
    6. Sun, Xianming & Xiao, Shiyi & Ren, Xiaohang & Xu, Bing, 2023. "Time-varying impact of information and communication technology on carbon emissions," Energy Economics, Elsevier, vol. 118(C).
    7. Wenchao Li & Jian Xu & Zhengming Wang & Jialiang Yang, 2020. "The impact of LCTI on China's low-carbon transformation from the spatial spillover perspective," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-11, November.
    8. Rao Fu & Kun Peng & Peng Wang & Honglin Zhong & Bin Chen & Pengfei Zhang & Yiyi Zhang & Dongyang Chen & Xi Liu & Kuishuang Feng & Jiashuo Li, 2023. "Tracing metal footprints via global renewable power value chains," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Peng, Hui & Lu, Yaobin & Wang, Qunwei, 2023. "How does heterogeneous industrial agglomeration affect the total factor energy efficiency of China's digital economy," Energy, Elsevier, vol. 268(C).
    10. Ma, Minda & Cai, Wei & Cai, Weiguang, 2018. "Carbon abatement in China's commercial building sector: A bottom-up measurement model based on Kaya-LMDI methods," Energy, Elsevier, vol. 165(PA), pages 350-368.
    11. Chen, Han & Yang, Lei & Chen, Wenying, 2020. "Modelling national, provincial and city-level low-carbon energy transformation pathways," Energy Policy, Elsevier, vol. 137(C).
    12. Tiejun Dai & Yazhe Zhao, 2024. "Spatial-temporal Dynamics and Driving Forces of Provincial CO2 Emission Responsibilities in China from Multiple Perspectives," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 14(4), pages 1-7.
    13. Cai, Bofeng & Lu, Jun & Wang, Jinnan & Dong, Huijuan & Liu, Xiaoman & Chen, Yang & Chen, Zhanming & Cong, Jianhui & Cui, Zhipeng & Dai, Chunyan & Fang, Kai & Feng, Tong & Guo, Jie & Li, Fen & Meng, Fa, 2019. "A benchmark city-level carbon dioxide emission inventory for China in 2005," Applied Energy, Elsevier, vol. 233, pages 659-673.
    14. Karligash Kenjegalieva & Richard Simper, 2010. "A Productivity analysis of Eastern European banking taking into account risk decomposition and environmental variables," Discussion Paper Series 2010_02, Department of Economics, Loughborough University, revised Jan 2010.
    15. Bolt, Wilko & Humphrey, David, 2010. "Bank competition efficiency in Europe: A frontier approach," Journal of Banking & Finance, Elsevier, vol. 34(8), pages 1808-1817, August.
    16. Fan, Jing-Li & Da, Ya-Bin & Wan, Si-Lai & Zhang, Mian & Cao, Zhe & Wang, Yu & Zhang, Xian, 2019. "Determinants of carbon emissions in ‘Belt and Road initiative’ countries: A production technology perspective," Applied Energy, Elsevier, vol. 239(C), pages 268-279.
    17. Shuyu Li & Qiang Wang & Rongrong Li, 2024. "How aging impacts environmental sustainability—insights from the effects of social consumption and labor supply," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-16, December.
    18. Chen, Zhenni & Zhang, Zengkai & Feng, Tong & Liu, Diyi, 2023. "What drives the temporal dynamics and spatial differences of urban and rural household emissions in China?," Energy Economics, Elsevier, vol. 125(C).
    19. Xiaodan Gao & Jinbao Li, 2024. "China’s Digital Economy: A Dual Mission of Carbon-Emission Reduction and Efficiency Enhancement," Sustainability, MDPI, vol. 16(6), pages 1-21, March.
    20. Zhao Yang, 2023. "Can the Digitalization Reduce Carbon Emission Intensity?—The Moderating Effects of the Fiscal Decentralization," Sustainability, MDPI, vol. 15(11), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:8:p:3159-:d:1373081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.