IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i5p1814-d1343862.html
   My bibliography  Save this article

Research of the Impact of Hydrogen Metallurgy Technology on the Reduction of the Chinese Steel Industry’s Carbon Dioxide Emissions

Author

Listed:
  • Fang Wan

    (College of Economics and Management, Taiyuan University of Technology, Taiyuan 030024, China)

  • Jizu Li

    (College of Economics and Management, Taiyuan University of Technology, Taiyuan 030024, China)

  • Yunfei Han

    (College of Economics and Management, Taiyuan University of Technology, Taiyuan 030024, China)

  • Xilong Yao

    (College of Economics and Management, Taiyuan University of Technology, Taiyuan 030024, China)

Abstract

The steel industry, which relies heavily on primary energy, is one of the industries with the highest CO 2 emissions in China. It is urgent for the industry to identify ways to embark on the path to “green steel”. Hydrogen metallurgy technology uses hydrogen as a reducing agent, and its use is an important way to reduce CO 2 emissions from long-term steelmaking and ensure the green and sustainable development of the steel industry. Previous research has demonstrated the feasibility and emission reduction effects of hydrogen metallurgy technology; however, further research is needed to dynamically analyze the overall impact of the large-scale development of hydrogen metallurgy technology on future CO 2 emissions from the steel industry. This article selects the integrated MARKAL-EFOM system (TIMES) model as its analysis model, constructs a China steel industry hydrogen metallurgy model (TIMES-CSHM), and analyzes the resulting impact of hydrogen metallurgy technology on CO 2 emissions. The results indicate that in the business-as-usual scenario (BAU scenario), applying hydrogen metallurgy technology in the period from 2020 to 2050 is expected to reduce emissions by 203 million tons, and make an average 39.85% contribution to reducing the steel industry’s CO 2 emissions. In the carbon emission reduction scenario, applying hydrogen metallurgy technology in the period from 2020 to 2050 is expected to reduce emissions by 353 million tons, contributing an average of 41.32% to steel industry CO 2 reduction. This study provides an assessment of how hydrogen metallurgy can reduce CO 2 emissions in the steel industry, and also provides a reference for the development of hydrogen metallurgy technology.

Suggested Citation

  • Fang Wan & Jizu Li & Yunfei Han & Xilong Yao, 2024. "Research of the Impact of Hydrogen Metallurgy Technology on the Reduction of the Chinese Steel Industry’s Carbon Dioxide Emissions," Sustainability, MDPI, vol. 16(5), pages 1-24, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:1814-:d:1343862
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/5/1814/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/5/1814/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shao, Shuai & Liu, Jianghua & Geng, Yong & Miao, Zhuang & Yang, Yingchun, 2016. "Uncovering driving factors of carbon emissions from China’s mining sector," Applied Energy, Elsevier, vol. 166(C), pages 220-238.
    2. Wang, Xiaoyang & Yu, Biying & An, Runying & Sun, Feihu & Xu, Shuo, 2022. "An integrated analysis of China’s iron and steel industry towards carbon neutrality," Applied Energy, Elsevier, vol. 322(C).
    3. An, Runying & Yu, Biying & Li, Ru & Wei, Yi-Ming, 2018. "Potential of energy savings and CO2 emission reduction in China’s iron and steel industry," Applied Energy, Elsevier, vol. 226(C), pages 862-880.
    4. Wang, Junfeng & He, Shutong & Qiu, Ye & Liu, Nan & Li, Yongjian & Dong, Zhanfeng, 2018. "Investigating driving forces of aggregate carbon intensity of electricity generation in China," Energy Policy, Elsevier, vol. 113(C), pages 249-257.
    5. Chen, Qianqian & Gu, Yu & Tang, Zhiyong & Wei, Wei & Sun, Yuhan, 2018. "Assessment of low-carbon iron and steel production with CO2 recycling and utilization technologies: A case study in China," Applied Energy, Elsevier, vol. 220(C), pages 192-207.
    6. Ren, Ming & Lu, Pantao & Liu, Xiaorui & Hossain, M.S. & Fang, Yanru & Hanaoka, Tatsuya & O'Gallachoir, Brian & Glynn, James & Dai, Hancheng, 2021. "Decarbonizing China’s iron and steel industry from the supply and demand sides for carbon neutrality," Applied Energy, Elsevier, vol. 298(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Honghua & Ma, Linwei & Li, Zheng, 2023. "Tracing China's steel use from steel flows in the production system to steel footprints in the consumption system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    2. Song, Weiming & Zhou, Jianan & Li, Yujie & Yang, Jian & Cheng, Rijin, 2021. "New technology for producing high-quality combustible gas by high-temperature reaction of dust-removal coke powder in mixed atmosphere," Energy, Elsevier, vol. 233(C).
    3. Fan, Jing-Li & Da, Ya-Bin & Wan, Si-Lai & Zhang, Mian & Cao, Zhe & Wang, Yu & Zhang, Xian, 2019. "Determinants of carbon emissions in ‘Belt and Road initiative’ countries: A production technology perspective," Applied Energy, Elsevier, vol. 239(C), pages 268-279.
    4. Sun, Jingchao & Na, Hongming & Yan, Tianyi & Qiu, Ziyang & Yuan, Yuxing & He, Jianfei & Li, Yingnan & Wang, Yisong & Du, Tao, 2021. "A comprehensive assessment on material, exergy and emission networks for the integrated iron and steel industry," Energy, Elsevier, vol. 235(C).
    5. Wang, Xiaoyang & Yu, Biying & An, Runying & Sun, Feihu & Xu, Shuo, 2022. "An integrated analysis of China’s iron and steel industry towards carbon neutrality," Applied Energy, Elsevier, vol. 322(C).
    6. Fang, Kai & Li, Chenglin & Tang, Yiqi & He, Jianjian & Song, Junnian, 2022. "China’s pathways to peak carbon emissions: New insights from various industrial sectors," Applied Energy, Elsevier, vol. 306(PA).
    7. Qingyou Yan & Yaxian Wang & Tomas Baležentis & Yikai Sun & Dalia Streimikiene, 2018. "Energy-Related CO 2 Emission in China’s Provincial Thermal Electricity Generation: Driving Factors and Possibilities for Abatement," Energies, MDPI, vol. 11(5), pages 1-25, April.
    8. Ren, Lei & Zhou, Sheng & Ou, Xunmin, 2023. "The carbon reduction potential of hydrogen in the low carbon transition of the iron and steel industry: The case of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    9. Xianrui Liao & Wei Yang & Yichen Wang & Junnian Song, 2019. "Uncovering Variations, Determinants, and Disparities of Multisector-Level Final Energy Use of Industries Across Cities," Sustainability, MDPI, vol. 11(6), pages 1-16, March.
    10. Wang, Yaxian & Zhao, Zhenli & Wang, Wenju & Streimikiene, Dalia & Balezentis, Tomas, 2023. "Interplay of multiple factors behind decarbonisation of thermal electricity generation: A novel decomposition model," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    11. Li, Xi & Yu, Biying, 2019. "Peaking CO2 emissions for China's urban passenger transport sector," Energy Policy, Elsevier, vol. 133(C).
    12. An, Runying & Yu, Biying & Li, Ru & Wei, Yi-Ming, 2018. "Potential of energy savings and CO2 emission reduction in China’s iron and steel industry," Applied Energy, Elsevier, vol. 226(C), pages 862-880.
    13. Chen, Jiandong & Xu, Chong & Shahbaz, Muhammad & Song, Malin, 2021. "Interaction determinants and projections of China’s energy consumption: 1997–2030," Applied Energy, Elsevier, vol. 283(C).
    14. Ioannidis, Alexis & Chalvatzis, Konstantinos J. & Li, Xin & Notton, Gilles & Stephanides, Phedeas, 2019. "The case for islands’ energy vulnerability: Electricity supply diversity in 44 global islands," Renewable Energy, Elsevier, vol. 143(C), pages 440-452.
    15. Hanbin Liu & Yujing Yang & Wenting Jiao & Shaobin Wang & Fangqin Cheng, 2022. "A New Assessment Method for the Redevelopment of Closed Coal Mine—A Case Study in Shanxi Province in China," Sustainability, MDPI, vol. 14(15), pages 1-19, August.
    16. Shao, Tianming & Pan, Xunzhang & Li, Xiang & Zhou, Sheng & Zhang, Shu & Chen, Wenying, 2022. "China's industrial decarbonization in the context of carbon neutrality: A sub-sectoral analysis based on integrated modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    17. Shuntian Xu & Huaxuan Wang & Xin Tian & Tao Wang & Hiroki Tanikawa, 2022. "From efficiency to equity: Changing patterns of China's regional transportation systems from an in‐use steel stocks perspective," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 548-561, April.
    18. Harmsen, Robert & Crijns-Graus, Wina, 2021. "Unhiding the role of CHP in power & heat sector decomposition analyses," Energy Policy, Elsevier, vol. 152(C).
    19. Jialing Zou & Zhipeng Tang & Shuang Wu, 2019. "Divergent Leading Factors in Energy-Related CO 2 Emissions Change among Subregions of the Beijing–Tianjin–Hebei Area from 2006 to 2016: An Extended LMDI Analysis," Sustainability, MDPI, vol. 11(18), pages 1-17, September.
    20. Liang, Wei & Gan, Ting & Zhang, Wei, 2019. "Dynamic evolution of characteristics and decomposition of factors influencing industrial carbon dioxide emissions in China: 1991–2015," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 93-106.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:1814-:d:1343862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.