IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i10p4402-d1654225.html
   My bibliography  Save this article

An Investigation into the Effects of Coke Dry Quenching Waste Heat Production on the Cost of the Steel Manufacturing Process

Author

Listed:
  • Lin Lu

    (College of Economics and Management, Taiyuan University of Technology, Jinzhong 030600, China)

  • Zhipeng Yan

    (State Grid Shanxi Electric Power Company, Taiyuan 030021, China)

  • Xilong Yao

    (College of Economics and Management, Taiyuan University of Technology, Jinzhong 030600, China)

  • Yunfei Han

    (College of Economics and Management, Taiyuan University of Technology, Jinzhong 030600, China)

Abstract

It is essential to evaluate the prospective development trends of coke dry quenching (CDQ) waste heat power generation, to reduce the comprehensive cost of the steelmaking system. Based on TIMES energy system optimization model, this study develops a model of China’s iron and steel production. Three scenarios are established, predictions and comparisons are conducted regarding the iron and steel production structure, total CDQ quantity, CO 2 and pollutant emissions under these scenarios. The findings indicate that: (1) The advancement of hydrogen metallurgy and EAF scrap smelting facilitates a reduction in the quantity of BF-BOF steelmaking and total CDQ consumption. (2) The decreasing demand for CDQ shows that the shift to clean production alters process pathways and compels the energy system from scale-driven to flexibility-focused. (3) The marginal value of the CDQ system is contingent upon the targeted policy support for multi-energy co-generation systems and their deep integration with hydrogen infrastructure. Accordingly, the utilization of CDQ waste heat power generation should be considered as a transitional strategy, it will be imperative to implement a reduction in capacity.

Suggested Citation

  • Lin Lu & Zhipeng Yan & Xilong Yao & Yunfei Han, 2025. "An Investigation into the Effects of Coke Dry Quenching Waste Heat Production on the Cost of the Steel Manufacturing Process," Sustainability, MDPI, vol. 17(10), pages 1-30, May.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:10:p:4402-:d:1654225
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/10/4402/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/10/4402/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ishaq, H. & Dincer, I. & Naterer, G.F., 2019. "Exergy and cost analyses of waste heat recovery from furnace cement slag for clean hydrogen production," Energy, Elsevier, vol. 172(C), pages 1243-1253.
    2. Lopez, Gabriel & Galimova, Tansu & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2023. "Towards defossilised steel: Supply chain options for a green European steel industry," Energy, Elsevier, vol. 273(C).
    3. Ren, Ming & Lu, Pantao & Liu, Xiaorui & Hossain, M.S. & Fang, Yanru & Hanaoka, Tatsuya & O'Gallachoir, Brian & Glynn, James & Dai, Hancheng, 2021. "Decarbonizing China’s iron and steel industry from the supply and demand sides for carbon neutrality," Applied Energy, Elsevier, vol. 298(C).
    4. Andrea Salimbeni & Marta Di Bianca & Andrea Maria Rizzo & David Chiaramonti, 2023. "Activated Carbon and P-Rich Fertilizer Production from Industrial Sludge by Application of an Integrated Thermo-Chemical Treatment," Sustainability, MDPI, vol. 15(19), pages 1-24, October.
    5. Nishiura, Osamu & Krey, Volker & Fricko, Oliver & van Ruijven, Bas & Fujimori, Shinichiro, 2024. "Integration of energy system and computable general equilibrium models: An approach complementing energy and economic representations for mitigation analysis," Energy, Elsevier, vol. 296(C).
    6. Qin, Shiyue & Chang, Shiyan, 2017. "Modeling, thermodynamic and techno-economic analysis of coke production process with waste heat recovery," Energy, Elsevier, vol. 141(C), pages 435-450.
    7. Sun, Kai & Tseng, Chen-Ting & Shan-Hill Wong, David & Shieh, Shyan-Shu & Jang, Shi-Shang & Kang, Jia-Lin & Hsieh, Wei-Dong, 2015. "Model predictive control for improving waste heat recovery in coke dry quenching processes," Energy, Elsevier, vol. 80(C), pages 275-283.
    8. Shuo Li & Huili Zhang & Jiapei Nie & Raf Dewil & Jan Baeyens & Yimin Deng, 2021. "The Direct Reduction of Iron Ore with Hydrogen," Sustainability, MDPI, vol. 13(16), pages 1-15, August.
    9. Fang Wan & Jizu Li & Yunfei Han & Xilong Yao, 2024. "Research of the Impact of Hydrogen Metallurgy Technology on the Reduction of the Chinese Steel Industry’s Carbon Dioxide Emissions," Sustainability, MDPI, vol. 16(5), pages 1-24, February.
    10. Arens, M. & Worrell, E., 2014. "Diffusion of energy efficient technologies in the German steel industry and their impact on energy consumption," Energy, Elsevier, vol. 73(C), pages 968-977.
    11. Zafer Utlu & Büşra Selenay Önal, 2018. "Thermodynamic analysis of thermophotovoltaic systems used in waste heat recovery systems: an application," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 13(1), pages 52-60.
    12. Chamin Geng & Zhuoyue Shi & Xianhao Chen & Ziwen Sun & Yawei Jin & Tian Shi & Xiao Wu, 2024. "Stochastic Capacity Optimization of an Integrated BFGCC–MSHS–Wind–Solar Energy System for the Decarbonization of a Steelmaking Plant," Energies, MDPI, vol. 17(12), pages 1-19, June.
    13. Yingying Du & Hui Huang & Haibin Liu & Jingying Zhao & Qingzhou Yang, 2024. "Life Cycle Assessment of Abandonment of Onshore Wind Power for Hydrogen Production in China," Sustainability, MDPI, vol. 16(13), pages 1-25, July.
    14. Le Zhang & Huixing Zhai & Jiayuan He & Fan Yang & Suilin Wang, 2022. "Application of Exergy Analysis in Flue Gas Condensation Waste Heat Recovery System Evaluation," Energies, MDPI, vol. 15(20), pages 1-12, October.
    15. Colucci, Gianvito & Lerede, Daniele & Nicoli, Matteo & Savoldi, Laura, 2023. "A dynamic accounting method for CO2 emissions to assess the penetration of low-carbon fuels: application to the TEMOA-Italy energy system optimization model," Applied Energy, Elsevier, vol. 352(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raillard--Cazanove, Quentin & Rogeau, Antoine & Girard, Robin, 2025. "Decarbonisation modelling for key industrial sectors focusing on process changes in a cost-optimised pathway," Applied Energy, Elsevier, vol. 382(C).
    2. Zhang, Kai & Du, Shiqi & Sun, Peng & Zheng, Bin & Liu, Yongqi & Shen, Yingkai & Chang, RunZe & Han, Xiaobiao, 2021. "The effect of particle arrangement on the direct heat extraction of regular packed bed with numerical simulation," Energy, Elsevier, vol. 225(C).
    3. Hu, Xueyue & Wang, Chunying & Elshkaki, Ayman, 2024. "Material-energy Nexus: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    4. Yang, Honghua & Ma, Linwei & Li, Zheng, 2023. "Tracing China's steel use from steel flows in the production system to steel footprints in the consumption system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    5. Hong, Sanghyun & Kim, Eunsung & Jeong, Saerok, 2023. "Evaluating the sustainability of the hydrogen economy using multi-criteria decision-making analysis in Korea," Renewable Energy, Elsevier, vol. 204(C), pages 485-492.
    6. Sun, Xue & Li, Xiaofei & Zeng, Jingxin & Song, Qiang & Yang, Zhen & Duan, Yuanyuan, 2023. "Energy and exergy analysis of a novel solar-hydrogen production system with S–I thermochemical cycle," Energy, Elsevier, vol. 283(C).
    7. Yihan Wang & Zongguo Wen & Mao Xu & Christian Doh Dinga, 2025. "Long-term transformation in China’s steel sector for carbon capture and storage technology deployment," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    8. Lan, Bingying & Dong, Ke & Li, Li & Lei, Yalin & Wu, Sanmang & Hua, Ershi & Sun, Ruyi, 2023. "CO2 emission reduction pathways of iron and steel industry in Shandong based on CO2 emission equity and efficiency," Resources Policy, Elsevier, vol. 81(C).
    9. Jia Liu & Shuo Li & Raf Dewil & Maarten Vanierschot & Jan Baeyens & Yimin Deng, 2022. "Water Splitting by MnO x /Na 2 CO 3 Reversible Redox Reactions," Sustainability, MDPI, vol. 14(13), pages 1-15, June.
    10. Wang, Xiaolei & Deng, Renxin & Yang, Yufang, 2023. "The spatiotemporal effect of factor price distortion on capacity utilization in China’s iron and steel industry," Resources Policy, Elsevier, vol. 86(PA).
    11. Chen, Jianjun & Lam, Hon Loong & Qian, Yu & Yang, Siyu, 2021. "Combined energy consumption and CO2 capture management: Improved acid gas removal process integrated with CO2 liquefaction," Energy, Elsevier, vol. 215(PA).
    12. Fabian Neumann & Johannes Hampp & Tom Brown, 2025. "Green energy and steel imports reduce Europe’s net-zero infrastructure needs," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    13. Ishaq, H. & Dincer, I., 2019. "Exergy analysis and performance evaluation of a newly developed integrated energy system for quenchable generation," Energy, Elsevier, vol. 179(C), pages 1191-1204.
    14. Mahmoud Khaled & Mostafa Mortada & Jalal Faraj & Khaled Chahine & Thierry Lemenand & Haitham S. Ramadan, 2022. "Effect of Airflow Non-Uniformities on the Thermal Performance of Water–Air Heat Exchangers—Experimental Study and Analysis," Energies, MDPI, vol. 15(21), pages 1-14, October.
    15. Weiwei Chen & Yibo Wang & Jia Zhang & Wei Dou & Yaxuan Jiao, 2022. "Planning and Energy–Economy–Environment–Security Evaluation Methods for Municipal Energy Systems in China under Targets of Peak Carbon Emissions and Carbon Neutrality," Energies, MDPI, vol. 15(19), pages 1-20, October.
    16. Tianjie Fu & Peiyu Li & Chenke Shi & Youzhu Liu, 2024. "Digital-Twin-Based Monitoring System for Slab Production Process," Future Internet, MDPI, vol. 16(2), pages 1-16, February.
    17. Zhang, Junxia & Zhong, Junfeng & Yang, Li & Wang, Zehua & Chen, Dongrui & Wang, Qiaoli, 2024. "Enhancement effect of semicoke waste heat on energy conservation and hydrogen production from biomass gasification," Renewable Energy, Elsevier, vol. 236(C).
    18. Brage Rugstad Knudsen & Hanne Kauko & Trond Andresen, 2019. "An Optimal-Control Scheme for Coordinated Surplus-Heat Exchange in Industry Clusters," Energies, MDPI, vol. 12(10), pages 1-22, May.
    19. Cheng, Xiang & Wang, Wenfu & Chen, Xueli & Zhang, Wei & Song, Malin, 2024. "Carbon tariffs and energy subsidies: Synergy or antagonism?," Energy, Elsevier, vol. 306(C).
    20. Wang, Peng-Tao & Xu, Qing-Chuang & Wang, Fei-Yin & Xu, Mao, 2024. "Investigating the impacts of the Dual Carbon Targets on energy and carbon flows in China," Energy, Elsevier, vol. 313(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:10:p:4402-:d:1654225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.