IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i16p6972-d1456324.html
   My bibliography  Save this article

Achieving Net-Zero in the Manufacturing Supply Chain through Carbon Capture and LCA: A Comprehensive Framework with BWM-Fuzzy DEMATEL

Author

Listed:
  • Alok Yadav

    (Department of Industrial and Production Engineering, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar 144008, India)

  • Anish Sachdeva

    (Department of Industrial and Production Engineering, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar 144008, India)

  • Rajiv Kumar Garg

    (Department of Industrial and Production Engineering, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar 144008, India)

  • Karishma M. Qureshi

    (Department of Mechanical Engineering, Parul Institute of Technology, Parul University, Waghodia 391760, India)

  • Bhavesh G. Mewada

    (Department of Mechanical Engineering, Parul Institute of Technology, Parul University, Waghodia 391760, India)

  • Mohamed Rafik Noor Mohamed Qureshi

    (Department of Industrial Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia)

  • Mohamed Mansour

    (Department of Industrial Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
    Industrial Engineering Department, College of Engineering, Zagazig University, Zagazig 44519, Egypt)

Abstract

Nowadays, industries across the globe are acknowledging the need for a Net Zero Supply Chain (NZSC) by 2050, particularly within the Manufacturing Supply Chain (MSC) due to its significant contribution to Greenhouse Gas (GHG) emissions. Government and regulatory bodies pressure the industry to reduce GHG emissions. Industries focus on cleaner and sustainable production by adopting net zero technique practices. Achieving the net zero goal needs technological integration, such as Caron Capture Technology (CCT) and Life Cycle Assessment (LCA). Are LCA and CCT unlocking the potential for net-zero practices in MSC? This still needs to be answered. Therefore, this study aims to identify and prioritize potential enablers of Life Cycle Assessment (LCA) to facilitate the NZSC. We identified potential enablers using a Systematic Literature Review (SLR) and expert opinion. An empirical study validated these enablers, followed by the application of the “Best-Worst Method (BWM)” to rank them and the “Fuzzy Decision-making trial and evaluation laboratory (F-DEMATEL)” to identify causal relationships. The outcomes of this study reveal that ‘Energy Management and Emission Reduction’ is the most critical category of enablers, followed by ‘Governance and Collaboration’, ‘Assessment and Digitalization’, and ‘Sustainable Materials and Production’. Outcomes highlight the importance of integrating technological innovations and stakeholder engagement to achieve net-zero goals. The implications of this study provide valuable insights for policymakers and practitioners. By focusing on the prioritized enablers, the manufacturing industry can effectively implement LCA, develop the NZSC business model, and enhance competitiveness in the global market. This study contributes to the ongoing discourse on sustainable manufacturing practices and offers a strategic framework for achieving NZSC by 2050.

Suggested Citation

  • Alok Yadav & Anish Sachdeva & Rajiv Kumar Garg & Karishma M. Qureshi & Bhavesh G. Mewada & Mohamed Rafik Noor Mohamed Qureshi & Mohamed Mansour, 2024. "Achieving Net-Zero in the Manufacturing Supply Chain through Carbon Capture and LCA: A Comprehensive Framework with BWM-Fuzzy DEMATEL," Sustainability, MDPI, vol. 16(16), pages 1-19, August.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:16:p:6972-:d:1456324
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/16/6972/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/16/6972/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abbas Sepehriar & Reza Eslamipoor, 2024. "An economical single-vendor single-buyer framework for carbon emission policies," Journal of Business Economics, Springer, vol. 94(6), pages 927-945, August.
    2. Christopher G. F. Bataille, 2020. "Physical and policy pathways to net‐zero emissions industry," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    3. Barnes, Stuart J. & Mattsson, Jan, 2016. "Understanding current and future issues in collaborative consumption: A four-stage Delphi study," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 200-211.
    4. Subramanian, Nachiappan & Gunasekaran, Angappa, 2015. "Cleaner supply-chain management practices for twenty-first-century organizational competitiveness: Practice-performance framework and research propositions," International Journal of Production Economics, Elsevier, vol. 164(C), pages 216-233.
    5. Anbesh Jamwal & Sushma Kumari & Rajeev Agrawal & Monica Sharma & Ismail Gölgeci, 2024. "Unlocking Circular Economy Through Digital Transformation: the Role of Enabling Factors in SMEs," International Journal of Global Business and Competitiveness, Springer, vol. 19(1), pages 24-36, June.
    6. Karishma M. Qureshi & Bhavesh G. Mewada & Mohanad Kamil Buniya & Mohamed Rafik Noor Mohamed Qureshi, 2023. "Analyzing Critical Success Factors of Lean 4.0 Implementation in Small and Medium Enterprises for Sustainable Manufacturing Supply Chain for Industry 4.0 Using PLS-SEM," Sustainability, MDPI, vol. 15(6), pages 1-15, March.
    7. Rezaei, Jafar, 2015. "Best-worst multi-criteria decision-making method," Omega, Elsevier, vol. 53(C), pages 49-57.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leandro Colevati dos Santos & Maria Lucia Pereira da Silva & Sebastião Gomes dos Santos Filho, 2024. "Sustainability in Industry 4.0: Edge Computing Microservices as a New Approach," Sustainability, MDPI, vol. 16(24), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shefali Srivastava & Vernika Agarwal & Ashish Dwivedi & Anchal Patil & Surajit Bag & Cyril R. H. Foropon, 2025. "Contributing Factors for Building a Flexible Supply Chain in the Digital Age: Studying Their Impact on SDGs," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 26(1), pages 141-161, March.
    2. James J. H. Liou & Perry C. Y. Liu & Huai-Wei Lo, 2020. "A Failure Mode Assessment Model Based on Neutrosophic Logic for Switched-Mode Power Supply Risk Analysis," Mathematics, MDPI, vol. 8(12), pages 1-19, December.
    3. Xiulan Jiang & Yukun Li & Jun Yang & Sen Wang & Chunjia Han, 2024. "Host–Guest Interaction and Sustainable Consumption Behaviour on Sharing-Accommodation Platforms: Using a Big Data Analytic Approach," Sustainability, MDPI, vol. 16(13), pages 1-22, June.
    4. Zarei, Esmaeil & Khan, Faisal & Abbassi, Rouzbeh, 2021. "Importance of human reliability in process operation: A critical analysis," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    5. Isabel Miralles & Domenico Dentoni & Stefano Pascucci, 2017. "Understanding the organization of sharing economy in agri-food systems: evidence from alternative food networks in Valencia," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 34(4), pages 833-854, December.
    6. Sarfaraz Hashemkhani Zolfani & Ramin Bazrafshan & Fatih Ecer & Çağlar Karamaşa, 2022. "The Suitability-Feasibility-Acceptability Strategy Integrated with Bayesian BWM-MARCOS Methods to Determine the Optimal Lithium Battery Plant Located in South America," Mathematics, MDPI, vol. 10(14), pages 1-18, July.
    7. Paul, Ananna & Shukla, Nagesh & Trianni, Andrea, 2023. "Modelling supply chain sustainability challenges in the food processing sector amid the COVID-19 outbreak," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    8. Liang, Fuqi & Brunelli, Matteo & Rezaei, Jafar, 2020. "Consistency issues in the best worst method: Measurements and thresholds," Omega, Elsevier, vol. 96(C).
    9. Martín-García, Jaime & Gómez-Limón, José A. & Arriaza, Manuel, 2024. "Conversion to organic farming: Does it change the economic and environmental performance of fruit farms?," Ecological Economics, Elsevier, vol. 220(C).
    10. Juuso Pajasmaa & Kaisa Miettinen & Johanna Silvennoinen, 2025. "Group Decision Making in Multiobjective Optimization: A Systematic Literature Review," Group Decision and Negotiation, Springer, vol. 34(2), pages 329-371, April.
    11. Salimi, Negin & Rezaei, Jafar, 2018. "Evaluating firms’ R&D performance using best worst method," Evaluation and Program Planning, Elsevier, vol. 66(C), pages 147-155.
    12. Željko Stević & Irena Đalić & Dragan Pamučar & Zdravko Nunić & Slavko Vesković & Marko Vasiljević & Ilija Tanackov, 2019. "A new hybrid model for quality assessment of scientific conferences based on Rough BWM and SERVQUAL," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 1-30, April.
    13. Wu, Xingli & Liao, Huchang, 2021. "Modeling personalized cognition of customers in online shopping," Omega, Elsevier, vol. 104(C).
    14. Ravindra Singh Saluja & Varinder Singh, 2023. "Attribute-based characterization, coding, and selection of joining processes using a novel MADM approach," OPSEARCH, Springer;Operational Research Society of India, vol. 60(2), pages 616-655, June.
    15. Zheng Yuan & Baohua Wen & Cheng He & Jin Zhou & Zhonghua Zhou & Feng Xu, 2022. "Application of Multi-Criteria Decision-Making Analysis to Rural Spatial Sustainability Evaluation: A Systematic Review," IJERPH, MDPI, vol. 19(11), pages 1-31, May.
    16. Kavitha, S. & Satheeshkumar, J. & Amudha, T., 2024. "Multi-label feature selection using q-rung orthopair hesitant fuzzy MCDM approach extended to CODAS," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 222(C), pages 148-173.
    17. Lopez, Gabriel & Galimova, Tansu & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2023. "Towards defossilised steel: Supply chain options for a green European steel industry," Energy, Elsevier, vol. 273(C).
    18. Manuel Sánchez-Pérez & Nuria Rueda-López & María Belén Marín-Carrillo & Eduardo Terán-Yépez, 2021. "Theoretical dilemmas, conceptual review and perspectives disclosure of the sharing economy: a qualitative analysis," Review of Managerial Science, Springer, vol. 15(7), pages 1849-1883, October.
    19. Francisco Javier Carrillo, 2016. "Knowledge markets: a typology and an overview," International Journal of Knowledge-Based Development, Inderscience Enterprises Ltd, vol. 7(3), pages 264-289.
    20. Junli Zhang & Guoteng Wang & Zheng Xu & Zheren Zhang, 2022. "A Comprehensive Evaluation Method and Strengthening Measures for AC/DC Hybrid Power Grids," Energies, MDPI, vol. 15(12), pages 1-20, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:16:p:6972-:d:1456324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.