IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i13p5612-d1426306.html
   My bibliography  Save this article

The Impact of the Digital Economy on Carbon Emission Levels and Its Coupling Relationships: Empirical Evidence from China

Author

Listed:
  • Sheyun Li

    (School of Marxism, Hunan University of Information Technology, Changsha 410151, China)

  • Yifan Tang

    (School of Economics, Hunan Agricultural University, Changsha 410128, China)

Abstract

The development of the digital economy has injected new vitality into the global economy, but the environmental issues it raises cannot be ignored. This paper analyzes the impact of the digital economy on carbon emission levels and their coupling relationships using panel data from 30 provinces, cities, and autonomous regions in mainland China from 2013 to 2021. By employing the coupling coordination degree model and the PVAR model, the study finds that the digital economy in mainland China has shown an upward trend, while carbon emission levels have exhibited a downward trend. The coupling degree between the digital economy and carbon emission levels is relatively good, though the coupling coordination degree is still in its early stages, indicating significant room for development. The digital economy has achieved a positive cumulative effect and can promote itself, and it has a significant negative impact on carbon emission levels.

Suggested Citation

  • Sheyun Li & Yifan Tang, 2024. "The Impact of the Digital Economy on Carbon Emission Levels and Its Coupling Relationships: Empirical Evidence from China," Sustainability, MDPI, vol. 16(13), pages 1-22, June.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5612-:d:1426306
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/13/5612/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/13/5612/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Richard S J Tol, 2018. "The Economic Impacts of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 4-25.
    2. B. Ekwurzel & J. Boneham & M. W. Dalton & R. Heede & R. J. Mera & M. R. Allen & P. C. Frumhoff, 2017. "The rise in global atmospheric CO2, surface temperature, and sea level from emissions traced to major carbon producers," Climatic Change, Springer, vol. 144(4), pages 579-590, October.
    3. Yi, Ming & Liu, Yafen & Sheng, Mingyue Selena & Wen, Le, 2022. "Effects of digital economy on carbon emission reduction: New evidence from China," Energy Policy, Elsevier, vol. 171(C).
    4. Shan, Yuli & Liu, Jianghua & Liu, Zhu & Xu, Xinwanghao & Shao, Shuai & Wang, Peng & Guan, Dabo, 2016. "New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors," Applied Energy, Elsevier, vol. 184(C), pages 742-750.
    5. Helen Onyeaka & Phemelo Tamasiga & Uju Mary Nwauzoma & Taghi Miri & Uche Chioma Juliet & Ogueri Nwaiwu & Adenike A. Akinsemolu, 2023. "Using Artificial Intelligence to Tackle Food Waste and Enhance the Circular Economy: Maximising Resource Efficiency and Minimising Environmental Impact: A Review," Sustainability, MDPI, vol. 15(13), pages 1-20, July.
    6. Yin, Zhaohui & Jiang, Xiaomeng & Lin, Songyue & Liu, Jin, 2022. "The impact of online education on carbon emissions in the context of the COVID-19 pandemic – Taking Chinese universities as examples," Applied Energy, Elsevier, vol. 314(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaping Zhu & Qingwei Xu & Chutong Hao & Shuaishuai Geng & Bingjun Li, 2025. "Synergistic Evolution or Competitive Disruption? Analysing the Dynamic Interaction Between Digital and Real Economies in Henan, China, Based on Panel Data," Data, MDPI, vol. 10(8), pages 1-37, August.
    2. Subhra Mondal & Subhankar Das & Vasiliki G. Vrana, 2024. "Exploring the Role of Artificial Intelligence in Achieving a Net Zero Carbon Economy in Emerging Economies: A Combination of PLS-SEM and fsQCA Approaches to Digital Inclusion and Climate Resilience," Sustainability, MDPI, vol. 16(23), pages 1-35, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rongrong Li & Qiang Wang & Ting Yang, 2025. "Digital economy and carbon efficiency: the roles of population aging and human capital," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 12(1), pages 1-16, December.
    2. Kun Zheng & Hongbing Deng & Kangni Lyu & Shuang Yang & Yu Cao, 2022. "Market Integration, Industrial Structure, and Carbon Emissions: Evidence from China," Energies, MDPI, vol. 15(24), pages 1-22, December.
    3. Huang, Chenchen & Lin, Boqiang, 2024. "Digital economy solutions towards carbon neutrality: The critical role of energy efficiency and energy structure transformation," Energy, Elsevier, vol. 306(C).
    4. Zhang, Kun & Kou, Zi-Xuan & Zhu, Pei-Hua & Qian, Xiang-Yan & Yang, Yun-Ze, 2025. "How does AI affect urban carbon emissions? Quasi-experimental evidence from China's AI innovation and development pilot zones," Economic Analysis and Policy, Elsevier, vol. 85(C), pages 426-447.
    5. Joaquín Bernal-Ramírez & Jair Ojeda-Joya & Camila Agudelo-Rivera & Felipe Clavijo-Ramírez & Carolina Durana-Ángel & Clark Granger-Castaño & Daniel Osorio-Rodríguez & Daniel Parra-Amado & José Pulido &, 2022. "Impacto macroeconómico del cambio climático en Colombia," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, issue 102, pages 1-62, July.
    6. Tianchu Feng & Andrea Appolloni & Jiayu Chen, 2024. "How does corporate digital transformation affect carbon productivity? Evidence from Chinese listed companies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(12), pages 31425-31445, December.
    7. Chen, Zeyu & Tang, Yuhong & Shen, Hebin & Liu, Jiali & Hu, Zheng, 2024. "Threshold effects of Government digital development and land resource disparity on Urban carbon efficiency in China," Resources Policy, Elsevier, vol. 94(C).
    8. Hongyang Qiao & Sanmang Wu, 2025. "Decoupling Factor Analysis for Sustainable Development in China’s Four Municipalities Using the Tapio Model," Sustainability, MDPI, vol. 17(6), pages 1-26, March.
    9. Teng, Meixuan & Burke, Paul J. & Liao, Hua, 2019. "The demand for coal among China's rural households: Estimates of price and income elasticities," Energy Economics, Elsevier, vol. 80(C), pages 928-936.
    10. Dinar, Ariel, 2012. "Economy-wide implications of direct and indirect policy interventions in the water sector: lessons from recent work and future research needs," Policy Research Working Paper Series 6068, The World Bank.
    11. Ran, Qiying & Yang, Xiaodong & Yan, Hongchuan & Xu, Yang & Cao, Jianhong, 2023. "Natural resource consumption and industrial green transformation: Does the digital economy matter?," Resources Policy, Elsevier, vol. 81(C).
    12. Xi Liu & Yugang He & Renhong Wu, 2024. "Revolutionizing Environmental Sustainability: The Role of Renewable Energy Consumption and Environmental Technologies in OECD Countries," Energies, MDPI, vol. 17(2), pages 1-21, January.
    13. Sassi, Maria & Cardaci, Alberto, 2013. "Impact of rainfall pattern on cereal market and food security in Sudan: Stochastic approach and CGE model," Food Policy, Elsevier, vol. 43(C), pages 321-331.
    14. Guo, Jiaqi & Wang, Qiang & Li, Rongrong, 2024. "Can official development assistance promote renewable energy in sub-Saharan Africa countries? A matter of institutional transparency of recipient countries," Energy Policy, Elsevier, vol. 186(C).
    15. Na Lu & Tiantian Shan & Wen Li & Xuan Liu & Weidong Wang, 2025. "Does the Digital Economy Promote Green Land Use Efficiency?," Sustainability, MDPI, vol. 17(16), pages 1-22, August.
    16. Senhua Huang & Lingming Chen, 2023. "The Impact of the Digital Economy on the Urban Total-Factor Energy Efficiency: Evidence from 275 Cities in China," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    17. Nicolas Taconet & Aurélie Méjean & Céline Guivarch, 2020. "Influence of climate change impacts and mitigation costs on inequality between countries," Climatic Change, Springer, vol. 160(1), pages 15-34, May.
    18. Khalil Nimer & Muath Abdelqader & Cemil Kuzey & Ali Uyar, 2024. "Emission targeting and carbon emissions: The moderating effect of female directors," Business Strategy and the Environment, Wiley Blackwell, vol. 33(4), pages 3480-3504, May.
    19. Pindyck, Robert S., 2012. "Uncertain outcomes and climate change policy," Journal of Environmental Economics and Management, Elsevier, vol. 63(3), pages 289-303.
    20. Zheng, Mingbo & Zhang, Xinyu, 2025. "Digitalization and renewable energy development: Analysis based on cross-country panel data," Energy, Elsevier, vol. 319(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5612-:d:1426306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.