IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i9p7272-d1134260.html
   My bibliography  Save this article

Enhancing Sustainable Business Models for Green Transportation

Author

Listed:
  • Vasco Simões

    (DMOGG, ISCTE-IUL, 1649-026 Lisbon, Portugal)

  • Leandro Pereira

    (DMOGG, ISCTE-IUL, 1649-026 Lisbon, Portugal
    BRU-Business Research Unit, 1649-026 Lisbon, Portugal)

  • Álvaro Dias

    (DMOGG, ISCTE-IUL, 1649-026 Lisbon, Portugal
    BRU-Business Research Unit, 1649-026 Lisbon, Portugal)

Abstract

Business models (BMs) are crucial for the successful market penetration and diffusion of sustainable innovations. Nonetheless, consumer preference knowledge about adopting electric vehicles (EVs) under innovative BMs is low. Drawing on existing conceptualizations of BMs, this investigation studied consumer preferences for three innovative BMs (EV-leasing; battery-leasing; B2C EV-sharing) and the traditional total purchase BM. This research aimed to analyze the growth of the EV market, as well as to understand consumer preferences regarding business models and how these can overcome the barriers to EV purchase. During this study, an empirical study was applied based on a quantitative method. Data were collected through Google Forms and disseminated via social media. Using survey data to conduct a quantitative analysis, the findings showed that most people have an interest in EVs but consider their high cost the main barrier. The environmental benefits are the main motivation for buying an EV, since people are very concerned about the environment. Regarding the innovative business models (IBMs), most people were not aware of their existence but believed that they were fundamental for EV acquisition.

Suggested Citation

  • Vasco Simões & Leandro Pereira & Álvaro Dias, 2023. "Enhancing Sustainable Business Models for Green Transportation," Sustainability, MDPI, vol. 15(9), pages 1-22, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7272-:d:1134260
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/9/7272/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/9/7272/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Egbue, Ona & Long, Suzanna, 2012. "Barriers to widespread adoption of electric vehicles: An analysis of consumer attitudes and perceptions," Energy Policy, Elsevier, vol. 48(C), pages 717-729.
    2. Ke, Wenwei & Zhang, Shaojun & He, Xiaoyi & Wu, Ye & Hao, Jiming, 2017. "Well-to-wheels energy consumption and emissions of electric vehicles: Mid-term implications from real-world features and air pollution control progress," Applied Energy, Elsevier, vol. 188(C), pages 367-377.
    3. Bohnsack, René & Pinkse, Jonatan & Kolk, Ans, 2014. "Business models for sustainable technologies: Exploring business model evolution in the case of electric vehicles," Research Policy, Elsevier, vol. 43(2), pages 284-300.
    4. Rennings, Klaus, 2000. "Redefining innovation -- eco-innovation research and the contribution from ecological economics," Ecological Economics, Elsevier, vol. 32(2), pages 319-332, February.
    5. Graham Town & Seyedfoad Taghizadeh & Sara Deilami, 2022. "Review of Fast Charging for Electrified Transport: Demand, Technology, Systems, and Planning," Energies, MDPI, vol. 15(4), pages 1-30, February.
    6. Henry Chesbrough & Richard S. Rosenbloom, 2002. "The role of the business model in capturing value from innovation: evidence from Xerox Corporation's technology spin-off companies," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 11(3), pages 529-555, June.
    7. Langbroek, Joram H.M. & Franklin, Joel P. & Susilo, Yusak O., 2016. "The effect of policy incentives on electric vehicle adoption," Energy Policy, Elsevier, vol. 94(C), pages 94-103.
    8. Mandys, F., 2021. "Electric vehicles and consumer choices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    9. Zarazua de Rubens, Gerardo & Noel, Lance & Kester, Johannes & Sovacool, Benjamin K., 2020. "The market case for electric mobility: Investigating electric vehicle business models for mass adoption," Energy, Elsevier, vol. 194(C).
    10. Huang, Youlin & Qian, Lixian, 2021. "Consumer adoption of electric vehicles in alternative business models," Energy Policy, Elsevier, vol. 155(C).
    11. Hidrue, Michael K. & Parsons, George R. & Kempton, Willett & Gardner, Meryl P., 2011. "Willingness to pay for electric vehicles and their attributes," Resource and Energy Economics, Elsevier, vol. 33(3), pages 686-705, September.
    12. Huang, Youlin & Qian, Lixian & Soopramanien, Didier & Tyfield, David, 2021. "Buy, lease, or share? Consumer preferences for innovative business models in the market for electric vehicles," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    13. Zhang, Shaojun & Wu, Ye & Liu, Huan & Huang, Ruikun & Yang, Liuhanzi & Li, Zhenhua & Fu, Lixin & Hao, Jiming, 2014. "Real-world fuel consumption and CO2 emissions of urban public buses in Beijing," Applied Energy, Elsevier, vol. 113(C), pages 1645-1655.
    14. Álvaro Dias & Leandro Pereira & Renato Lopes da Costa, 2023. "Organizational Capabilities as Antecedents of Entrepreneurship: A Basis for Business Practice and Policy Making," Journal of African Business, Taylor & Francis Journals, vol. 24(1), pages 1-18, January.
    15. Budde Christensen, Thomas & Wells, Peter & Cipcigan, Liana, 2012. "Can innovative business models overcome resistance to electric vehicles? Better Place and battery electric cars in Denmark," Energy Policy, Elsevier, vol. 48(C), pages 498-505.
    16. Scarinci, Riccardo & Rast, Frédéric & Bierlaire, Michel, 2017. "Needed reduction in mobility energy consumption to meet the goal of a 2000-watt society," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 133-148.
    17. Sierzchula, William & Bakker, Sjoerd & Maat, Kees & van Wee, Bert, 2014. "The influence of financial incentives and other socio-economic factors on electric vehicle adoption," Energy Policy, Elsevier, vol. 68(C), pages 183-194.
    18. Newbery, David & Strbac, Goran & Viehoff, Ivan, 2016. "The benefits of integrating European electricity markets," Energy Policy, Elsevier, vol. 94(C), pages 253-263.
    19. Nocera, Silvio & Cavallaro, Federico, 2016. "The competitiveness of alternative transport fuels for CO2 emissions," Transport Policy, Elsevier, vol. 50(C), pages 1-14.
    20. Hidrue, Michael K. & Parsons, George R., 2015. "Is there a near-term market for vehicle-to-grid electric vehicles?," Applied Energy, Elsevier, vol. 151(C), pages 67-76.
    21. Diamond, David, 2009. "The impact of government incentives for hybrid-electric vehicles: Evidence from US states," Energy Policy, Elsevier, vol. 37(3), pages 972-983, March.
    22. Liao, Fanchao & Molin, Eric & Timmermans, Harry & van Wee, Bert, 2019. "Consumer preferences for business models in electric vehicle adoption," Transport Policy, Elsevier, vol. 73(C), pages 12-24.
    23. Cao, Jidi & Chen, Xin & Qiu, Rui & Hou, Shuhua, 2021. "Electric vehicle industry sustainable development with a stakeholder engagement system," Technology in Society, Elsevier, vol. 67(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhongwei Zhu & Tingyu Qian & Lei Liu, 2023. "Evolutionary Simulation of Carbon-Neutral Behavior of Urban Citizens in a “Follow–Drive” Perspective," Sustainability, MDPI, vol. 15(13), pages 1-28, July.
    2. Arne Jeppe & Heike Proff & Max Eickhoff, 2023. "Economic Potentials of Ecologically Attractive Multi-Life Products—The Example of Lithium-Ion Batteries," Sustainability, MDPI, vol. 15(14), pages 1-16, July.
    3. Rafia Mumtaz & Arslan Amin & Muhammad Ajmal Khan & Muhammad Daud Abdullah Asif & Zahid Anwar & Muhammad Jawad Bashir, 2023. "Impact of Green Energy Transportation Systems on Urban Air Quality: A Predictive Analysis Using Spatiotemporal Deep Learning Techniques," Energies, MDPI, vol. 16(16), pages 1-30, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Youlin & Qian, Lixian & Soopramanien, Didier & Tyfield, David, 2021. "Buy, lease, or share? Consumer preferences for innovative business models in the market for electric vehicles," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    2. Huang, Youlin & Qian, Lixian, 2021. "Consumer adoption of electric vehicles in alternative business models," Energy Policy, Elsevier, vol. 155(C).
    3. Makena Coffman & Paul Bernstein & Sherilyn Wee, 2017. "Electric vehicles revisited: a review of factors that affect adoption," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 79-93, January.
    4. Li, Xiaomin & Chen, Pu & Wang, Xingwu, 2017. "Impacts of renewables and socioeconomic factors on electric vehicle demands – Panel data studies across 14 countries," Energy Policy, Elsevier, vol. 109(C), pages 473-478.
    5. Egnér, Filippa & Trosvik, Lina, 2018. "Electric vehicle adoption in Sweden and the impact of local policy instruments," Energy Policy, Elsevier, vol. 121(C), pages 584-596.
    6. Wee, Sherilyn & Coffman, Makena & Allen, Scott, 2020. "EV driver characteristics: Evidence from Hawaii," Transport Policy, Elsevier, vol. 87(C), pages 33-40.
    7. Lin, Boqiang & Tan, Ruipeng, 2017. "Estimation of the environmental values of electric vehicles in Chinese cities," Energy Policy, Elsevier, vol. 104(C), pages 221-229.
    8. Cecere, Grazia & Corrocher, Nicoletta & Guerzoni, Marco, 2018. "Price or performance? A probabilistic choice analysis of the intention to buy electric vehicles in European countries," Energy Policy, Elsevier, vol. 118(C), pages 19-32.
    9. Ji, Wei, 2018. "Data-Driven Behavior Analysis and Implications in Plug-in Electric Vehicle Policy Studies," Institute of Transportation Studies, Working Paper Series qt6dw4d18t, Institute of Transportation Studies, UC Davis.
    10. Nilsson, Måns & Nykvist, Björn, 2016. "Governing the electric vehicle transition – Near term interventions to support a green energy economy," Applied Energy, Elsevier, vol. 179(C), pages 1360-1371.
    11. Makena Coffman & Scott Allen & Sherilyn Wee, 2018. "Who are Driving Electric Vehicles? An analysis of factors that affect EV adoption in Hawaii," Working Papers 2018-3, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    12. Philip, Thara & Whitehead, Jake & Prato, Carlo G., 2023. "Adoption of electric vehicles in a laggard, car-dependent nation: Investigating the potential influence of V2G and broader energy benefits on adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 167(C).
    13. Yang, Shu & Cheng, Peng & Li, Jun & Wang, Shanyong, 2019. "Which group should policies target? Effects of incentive policies and product cognitions for electric vehicle adoption among Chinese consumers," Energy Policy, Elsevier, vol. 135(C).
    14. Sarmad Zaman Rajper & Johan Albrecht, 2020. "Prospects of Electric Vehicles in the Developing Countries: A Literature Review," Sustainability, MDPI, vol. 12(5), pages 1-19, March.
    15. Kyuho Maeng & Sungmin Ko & Jungwoo Shin & Youngsang Cho, 2020. "How Much Electricity Sharing Will Electric Vehicle Owners Allow from Their Battery? Incorporating Vehicle-to-Grid Technology and Electricity Generation Mix," Energies, MDPI, vol. 13(16), pages 1-25, August.
    16. Patyal, Vishal Singh & Kumar, Ravi & Kushwah, Shiksha, 2021. "Modeling barriers to the adoption of electric vehicles: An Indian perspective," Energy, Elsevier, vol. 237(C).
    17. Clinton, Bentley C. & Steinberg, Daniel C., 2019. "Providing the Spark: Impact of financial incentives on battery electric vehicle adoption," Journal of Environmental Economics and Management, Elsevier, vol. 98(C).
    18. Soares, N. & Martins, A.G. & Carvalho, A.L. & Caldeira, C. & Du, C. & Castanheira, É. & Rodrigues, E. & Oliveira, G. & Pereira, G.I. & Bastos, J. & Ferreira, J.P. & Ribeiro, L.A. & Figueiredo, N.C. & , 2018. "The challenging paradigm of interrelated energy systems towards a more sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 171-193.
    19. Alali, Layla & Niesten, Eva & Gagliardi, Dimitri, 2022. "The impact of UK financial incentives on the adoption of electric fleets: The moderation effect of GDP change," Transportation Research Part A: Policy and Practice, Elsevier, vol. 161(C), pages 200-220.
    20. Bassem Haidar & Pascal da Costa & Jan Lepoutre & Yannick Perez, 2019. "Corri-door project: did it really boost the french electric vehicle market?," Post-Print hal-02438211, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7272-:d:1134260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.