IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i7p5683-d1106073.html
   My bibliography  Save this article

Research on the Impact of Digital Economy on Manufacturing Total Factor Productivity

Author

Listed:
  • Jiaqi Chang

    (China Telecom Research Institute, Beijing 102209, China)

  • Qingxin Lan

    (School of International Trade and Economics, University of International Business and Economics, Beijing 100015, China)

  • Wan Tang

    (School of International Trade and Economics, University of International Business and Economics, Beijing 100015, China)

  • Hailong Chen

    (China Telecom Research Institute, Beijing 102209, China)

  • Jun Liu

    (China Telecom Research Institute, Beijing 102209, China)

  • Yunpeng Duan

    (School of International Trade and Economics, University of International Business and Economics, Beijing 100015, China)

Abstract

This paper empirically tests the impact mechanism of digital economy development on manufacturing total factor productivity, using data from Chinese manufacturing enterprises from 2011 to 2020, and based on the theoretical framework of the impact of digital economy development on manufacturing total factor productivity. The development of the digital economy has been found to have a significant positive impact on the total factor productivity of the manufacturing industry. The heterogeneity effect demonstrates that the digital economy in coastal areas has a significant effect on the improvement of manufacturing total factor productivity, with the eastern coastal area having the strongest effect; the digital economy in the Yellow River’s middle reaches, the Yangtze River’s middle reaches, and the southwest also having a significant effect, with the effect in the southwest region being more significant; and the digital economy in the northwest and northeast having no effect. Possible reasons include larger bottlenecks in the western region’s labor force structure, technology level, and management capabilities, which may lead to the inability of enterprises to effectively absorb the dividends of digital change and apply the scenarios, thus affecting the release of their productivity effects.

Suggested Citation

  • Jiaqi Chang & Qingxin Lan & Wan Tang & Hailong Chen & Jun Liu & Yunpeng Duan, 2023. "Research on the Impact of Digital Economy on Manufacturing Total Factor Productivity," Sustainability, MDPI, vol. 15(7), pages 1-21, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:5683-:d:1106073
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/7/5683/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/7/5683/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert M. Solow, 1956. "A Contribution to the Theory of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 70(1), pages 65-94.
    2. Piotr F. Borowski, 2021. "Digitization, Digital Twins, Blockchain, and Industry 4.0 as Elements of Management Process in Enterprises in the Energy Sector," Energies, MDPI, vol. 14(7), pages 1-20, March.
    3. Daron Acemoglu & Pascual Restrepo, 2018. "Artificial Intelligence, Automation, and Work," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 197-236, National Bureau of Economic Research, Inc.
    4. Daron Acemoglu & Pascual Restrepo, 2018. "Artificial Intelligence, Automation and Work," Boston University - Department of Economics - Working Papers Series dp-298, Boston University - Department of Economics.
    5. Olley, G Steven & Pakes, Ariel, 1996. "The Dynamics of Productivity in the Telecommunications Equipment Industry," Econometrica, Econometric Society, vol. 64(6), pages 1263-1297, November.
    6. Mirco Peron & Giuseppe Fragapane & Fabio Sgarbossa & Michael Kay, 2020. "Digital Facility Layout Planning," Sustainability, MDPI, vol. 12(8), pages 1-17, April.
    7. Daron Acemoglu & Pascual Restrepo, 2018. "The Race between Man and Machine: Implications of Technology for Growth, Factor Shares, and Employment," American Economic Review, American Economic Association, vol. 108(6), pages 1488-1542, June.
    8. Jesus Felipe & John McCombie, 2020. "The illusions of calculating total factor productivity and testing growth models: from Cobb-Douglas to Solow and Romer," Journal of Post Keynesian Economics, Taylor & Francis Journals, vol. 43(3), pages 470-513, July.
    9. David Deming & Lisa B. Kahn, 2018. "Skill Requirements across Firms and Labor Markets: Evidence from Job Postings for Professionals," Journal of Labor Economics, University of Chicago Press, vol. 36(S1), pages 337-369.
    10. Kangxian Ji & Xiaoting Liu & Jian Xu, 2023. "Digital Economy and the Sustainable Development of China’s Manufacturing Industry: From the Perspective of Industry Performance and Green Development," Sustainability, MDPI, vol. 15(6), pages 1-23, March.
    11. Luiza Bădin & Cinzia Daraio & Léopold Simar, 2014. "Explaining inefficiency in nonparametric production models: the state of the art," Annals of Operations Research, Springer, vol. 214(1), pages 5-30, March.
    12. Erik Brynjolfsson & Lorin M. Hitt, 2000. "Beyond Computation: Information Technology, Organizational Transformation and Business Performance," Journal of Economic Perspectives, American Economic Association, vol. 14(4), pages 23-48, Fall.
    13. Chenery, Hollis B, 1980. "Interactions between Industrialization and Exports," American Economic Review, American Economic Association, vol. 70(2), pages 281-287, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Congqi Wang & Rui Zhang & Haslindar Ibrahim & Pengzhen Liu, 2023. "Can the Digital Economy Enable Carbon Emission Reduction: Analysis of Mechanisms and China’s Experience," Sustainability, MDPI, vol. 15(13), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xueyuan Gao & Hua Feng, 2023. "AI-Driven Productivity Gains: Artificial Intelligence and Firm Productivity," Sustainability, MDPI, vol. 15(11), pages 1-21, June.
    2. Alekseeva, Liudmila & Azar, José & Giné, Mireia & Samila, Sampsa & Taska, Bledi, 2021. "The demand for AI skills in the labor market," Labour Economics, Elsevier, vol. 71(C).
    3. Pang, Ziyun, 2022. "A Note on Economic Growth and Labor Automation," MPRA Paper 112457, University Library of Munich, Germany.
    4. Azar, José & Alekseeva, Liudmila & Gine, Mireia & Samila, Sampsa & Taska, Bledi, 2020. "The Demand for AI Skills in the Labor Market," CEPR Discussion Papers 14320, C.E.P.R. Discussion Papers.
    5. Eleni Giouli & Pisinas Yorgos & Anna-Maria Kanzola, 2021. "Human Capital and Production Structure: Evidence from Greece," European Journal of Economics and Business Studies Articles, Revistia Research and Publishing, vol. 7, January -.
    6. Zilian, Laura S. & Zilian, Stella S. & Jäger, Georg, 2021. "Labour market polarisation revisited: evidence from Austrian vacancy data," Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 55, pages 1-7.
    7. Lu, Jing & Xiao, Qinglan & Wang, Taoxuan, 2023. "Does the digital economy generate a gender dividend for female employment? Evidence from China," Telecommunications Policy, Elsevier, vol. 47(6).
    8. Andreas Irmen, 2021. "Automation, growth, and factor shares in the era of population aging," Journal of Economic Growth, Springer, vol. 26(4), pages 415-453, December.
    9. Zhu, Jun & Zhang, Jingting & Feng, Yiqing, 2022. "Hard budget constraints and artificial intelligence technology," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    10. Gregory Casey & Ryo Horii, 2019. "A Multi-factor Uzawa Growth Theorem and Endogenous Capital-Augmenting Technological Change," ISER Discussion Paper 1051, Institute of Social and Economic Research, Osaka University.
    11. Ana L. ABELIANSKY & Eda ALGUR & David E. BLOOM & Klaus PRETTNER, 2020. "The future of work: Meeting the global challenges of demographic change and automation," International Labour Review, International Labour Organization, vol. 159(3), pages 285-306, September.
    12. Yining Zhang & Zhong Wu, 2021. "Intelligence and Green Total Factor Productivity Based on China’s Province-Level Manufacturing Data," Sustainability, MDPI, vol. 13(9), pages 1-16, April.
    13. Zhiqiang Zhou & Wenyan Liu & Pengfei Cheng & Zhenjin Li, 2022. "The Impact of the Digital Economy on Enterprise Sustainable Development and Its Spatial-Temporal Evolution: An Empirical Analysis Based on Urban Panel Data in China," Sustainability, MDPI, vol. 14(19), pages 1-23, September.
    14. Bokrantz, Jon & Skoogh, Anders & Berlin, Cecilia & Wuest, Thorsten & Stahre, Johan, 2020. "Smart Maintenance: a research agenda for industrial maintenance management," International Journal of Production Economics, Elsevier, vol. 224(C).
    15. Mohamed Salem Ahmed Ibrahim Alhosani & Kamarul Bahari Yaakub, 2021. "Investigating the Relationship Between Total Quality Management and Primary School Academic Performance with Innovation as a Mediator Using SEM," European Journal of Economics and Business Studies Articles, Revistia Research and Publishing, vol. 7, January -.
    16. Mandal, Biswajit & Roy Chakraborty, Labani & Sanyal, Alapan, 2023. "A Hybrid Mode of Production, Transaction, and Economic Growth: Implication of Digitalization," MPRA Paper 116960, University Library of Munich, Germany.
    17. Lei Wang & Provash Sarker & Kausar Alam & Shahneoaj Sumon, 2021. "Artificial Intelligence and Economic Growth: A Theoretical Framework," Scientific Annals of Economics and Business (continues Analele Stiintifice), Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, vol. 68(4), pages 421-443, November.
    18. Li, Jianqiang & Shan, Yaowen & Tian, Gary & Hao, Xiangchao, 2020. "Labor cost, government intervention, and corporate innovation: Evidence from China," Journal of Corporate Finance, Elsevier, vol. 64(C).
    19. Wang, Linhui & Cao, Zhanglu & Dong, Zhiqing, 2023. "Are artificial intelligence dividends evenly distributed between profits and wages? Evidence from the private enterprise survey data in China," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 342-356.
    20. Fossen, Frank M. & Sorgner, Alina, 2022. "New digital technologies and heterogeneous wage and employment dynamics in the United States: Evidence from individual-level data," Technological Forecasting and Social Change, Elsevier, vol. 175(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:5683-:d:1106073. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.