IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i24p16556-d1294458.html
   My bibliography  Save this article

Electrochemical Recovery of Phosphorus from Simulated and Real Wastewater: Effect of Investigational Conditions on the Process Efficiency

Author

Listed:
  • Carlos Y. Sousa

    (FibEnTech-UBI, Department of Chemistry, Universidade da Beira Interior (UBI), 6201-001 Covilhã, Portugal)

  • Annabel Fernandes

    (FibEnTech-UBI, Department of Chemistry, Universidade da Beira Interior (UBI), 6201-001 Covilhã, Portugal)

  • Albertina Amaro

    (FibEnTech-UBI, Department of Chemistry, Universidade da Beira Interior (UBI), 6201-001 Covilhã, Portugal)

  • Maria José Pacheco

    (FibEnTech-UBI, Department of Chemistry, Universidade da Beira Interior (UBI), 6201-001 Covilhã, Portugal)

  • Lurdes Ciríaco

    (FibEnTech-UBI, Department of Chemistry, Universidade da Beira Interior (UBI), 6201-001 Covilhã, Portugal)

  • Ana Lopes

    (FibEnTech-UBI, Department of Chemistry, Universidade da Beira Interior (UBI), 6201-001 Covilhã, Portugal)

Abstract

The development of recovery processes has become essential in recent years as a strategy to minimize environmental pollution while boosting circular economy and sustainable development. Due to the exponential growth in agricultural production and the increased pollution of waterbodies, the production of fertilizers from recovered phosphorus has become an alternative to phosphate rock-based production. In this work, the effect of different operational parameters in the efficiency of the electrochemical recovery of phosphorus, from organic and inorganic sources, was investigated. Among the studied variables, the most significant was the electrode material utilized in the system. The use of magnesium sacrificial electrodes, as AZ31 alloys, led to phosphorus removal from solution of above 90%, allowing the recovery of both orthophosphates and organic phosphorus (glyphosate) as struvite, brucite, and other amorphous compounds. Since there is a lack in the literature about the use of magnesium electrodes in real wastewater electrochemical treatment, system efficiency was also evaluated using a sanitary landfill leachate, reaching 96% of phosphorus recovery. The specific energy consumption and faradaic efficiency of the phosphorus recovery process were also assessed.

Suggested Citation

  • Carlos Y. Sousa & Annabel Fernandes & Albertina Amaro & Maria José Pacheco & Lurdes Ciríaco & Ana Lopes, 2023. "Electrochemical Recovery of Phosphorus from Simulated and Real Wastewater: Effect of Investigational Conditions on the Process Efficiency," Sustainability, MDPI, vol. 15(24), pages 1-15, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:24:p:16556-:d:1294458
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/24/16556/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/24/16556/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gilland, Bernard, 2002. "World population and food supply: can food production keep pace with population growth in the next half-century?," Food Policy, Elsevier, vol. 27(1), pages 47-63, February.
    2. S. T. Dyhrman & P. D. Chappell & S. T. Haley & J. W. Moffett & E. D. Orchard & J. B. Waterbury & E. A. Webb, 2006. "Phosphonate utilization by the globally important marine diazotroph Trichodesmium," Nature, Nature, vol. 439(7072), pages 68-71, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yogeeswari Subramaniam & Tajul Ariffin Masron & Niaz Ahmad Mohd Naseem, 2023. "The Impact of Logistics on Four Dimensions of Food Security in Developing Countries," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 14(3), pages 3431-3452, September.
    2. Clotilde Grandval & Jean-Christophe Bureau & Herve Guyomard & Laurence Roudart, 2006. "Panorama des analyses prospectives sur l'évolution de la sécurité alimentaire mondiale à l'horizon 2020-2030," Working Papers hal-02819396, HAL.
    3. Chhetri, Netra B. & Shrestha, Sundar S., 2004. "The Prospects Of Agricultural Adaptation To Climate Change: Climate-Technology Interaction In Rice -Wheat Cropping System In Nepal," 2004 Annual meeting, August 1-4, Denver, CO 20144, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    4. Rawashdeh, Rami Al & Xavier-Oliveira, Emanuel & Maxwell, Philip, 2016. "The potash market and its future prospects," Resources Policy, Elsevier, vol. 47(C), pages 154-163.
    5. Ferhat Kizilgeci & Mehmet Yildirim & Mohammad Sohidul Islam & Disna Ratnasekera & Muhammad Aamir Iqbal & Ayman EL Sabagh, 2021. "Normalized Difference Vegetation Index and Chlorophyll Content for Precision Nitrogen Management in Durum Wheat Cultivars under Semi-Arid Conditions," Sustainability, MDPI, vol. 13(7), pages 1-11, March.
    6. Walsh, E. & Babakina, O. & Pennock, A. & Shi, H. & Chi, Y. & Wang, T. & Graedel, T.E., 2006. "Quantitative guidelines for urban sustainability," Technology in Society, Elsevier, vol. 28(1), pages 45-61.
    7. Engstrom, Rebecka & Carlsson-Kanyama, Annika, 2004. "Food losses in food service institutions Examples from Sweden," Food Policy, Elsevier, vol. 29(3), pages 203-213, June.
    8. de Boer, Joop & Helms, Martine & Aiking, Harry, 2006. "Protein consumption and sustainability: Diet diversity in EU-15," Ecological Economics, Elsevier, vol. 59(3), pages 267-274, September.
    9. Lee, Chien-Chiang & Yan, Jingyang & Wang, Fuhao, 2024. "Impact of population aging on food security in the context of artificial intelligence: Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
    10. Wang, Qing & Liu, Xuehua & Yue, Tianxiang & Wang, Chenliang & Wilson, John P., 2015. "Using models and spatial analysis to analyze spatio-temporal variations of food provision and food potential across China's agro-ecosystems," Ecological Modelling, Elsevier, vol. 306(C), pages 152-159.
    11. Sadowski, Arkadiusz & Baer-Nawrocka, Agnieszka, 2018. "Food and environmental function in world agriculture—Interdependence or competition?," Land Use Policy, Elsevier, vol. 71(C), pages 578-583.
    12. Pollitt, Michael G. & Steer, Steven J., 2012. "Economies of scale and scope in network industries: Lessons for the UK water and sewerage sectors," Utilities Policy, Elsevier, vol. 21(C), pages 17-31.
    13. Carleton Schade & David Pimentel, 2010. "Population crash: prospects for famine in the twenty-first century," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 12(2), pages 245-262, April.
    14. Steger, Sören, 2005. "Der Flächenrucksack des europäischen Außenhandels mit Agrarprodukten," Wuppertal Papers 152, Wuppertal Institute for Climate, Environment and Energy.
    15. Kubo, Masayoshi & Xie, Jingci, 2006. "A Continental Method for Estimating the Supply and Import/ Export of Wheat," Journal of Food Distribution Research, Food Distribution Research Society, vol. 37(3), pages 1-17, November.
    16. Sakschewski, Boris & von Bloh, Werner & Huber, Veronika & Müller, Christoph & Bondeau, Alberte, 2014. "Feeding 10 billion people under climate change: How large is the production gap of current agricultural systems?," Ecological Modelling, Elsevier, vol. 288(C), pages 103-111.
    17. de Boer, Joop & Aiking, Harry, 2011. "On the merits of plant-based proteins for global food security: Marrying macro and micro perspectives," Ecological Economics, Elsevier, vol. 70(7), pages 1259-1265, May.
    18. Asael Greenfeld & Dror Angel & Yanay Farja, 2024. "Valuing Sustainability Impacts and Food Security Effects of Local Mariculture," Sustainability, MDPI, vol. 16(22), pages 1-15, November.
    19. repec:plo:pone00:0202037 is not listed on IDEAS
    20. Maya H. Montolalu & Mahjus Ekananda & Teguh Dartanto & Diah Widyawati & Maddaremmeng Panennungi, 2022. "The Analysis of Trade Liberalization and Nutrition Intake for Improving Food Security across Districts in Indonesia," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    21. Ian G. J. Dawson & Johnnie E. V. Johnson, 2014. "Growing Pains: How Risk Perception and Risk Communication Research Can Help to Manage the Challenges of Global Population Growth," Risk Analysis, John Wiley & Sons, vol. 34(8), pages 1378-1390, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:24:p:16556-:d:1294458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.