IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p14006-d1244619.html
   My bibliography  Save this article

Collection and Processing of Roadside Grass Clippings: A Supply Chain Optimization Case Study for East Flanders

Author

Listed:
  • Frederik De Wieuw

    (Department of Transport and Regional Economics, University of Antwerp, Prinsstraat 13, 2000 Antwerpen, Belgium)

  • Tom Pauwels

    (POM Oost-Vlaanderen, Woodrow Wilsonplein 2, 9000 Gent, Belgium)

  • Christa Sys

    (Department of Transport and Regional Economics, University of Antwerp, Prinsstraat 13, 2000 Antwerpen, Belgium)

  • Eddy Van de Voorde

    (Department of Transport and Regional Economics, University of Antwerp, Prinsstraat 13, 2000 Antwerpen, Belgium)

  • Edwin van Hassel

    (Department of Transport and Regional Economics, University of Antwerp, Prinsstraat 13, 2000 Antwerpen, Belgium)

  • Thierry Vanelslander

    (Department of Transport and Regional Economics, University of Antwerp, Prinsstraat 13, 2000 Antwerpen, Belgium)

  • Jeffrey Willems

    (Department of Transport and Regional Economics, University of Antwerp, Prinsstraat 13, 2000 Antwerpen, Belgium)

Abstract

The paper focuses on secondary bio streams which are not captured efficiently in the value supply chain. Specifically, roadside grass clippings were chosen, based on their logistical optimization potential, direct feasibility, locality, biomass potential, and economic valorization value. The main objective is to determine how this secondary flow can be brought to the “factory gate”—through road transport and inland shipping—and at what cost per unit. To this end, various scenarios were developed for a case study in East Flanders, considering multiple combinations of first collection points, secondary collection points, and processing points. The result is a generically applicable Excel-based tool that combines these variations with a solution considering both inland waterways and road transport. These scenarios become valuable in applying the tool for grass clippings and optimizing this value chain located in East Flanders. The results show that reducing the number of collection points is favorable for the utilization of inland waterways, as it reduces costs related to transshipment. Nevertheless, unimodal road transport is still the most cost-effective method for transporting this secondary material stream from the collection point to the processing point. Consequently, a lower weight and a higher density will lead to lower costs, which eventually bottom out, due to regulations and conditions that must be met.

Suggested Citation

  • Frederik De Wieuw & Tom Pauwels & Christa Sys & Eddy Van de Voorde & Edwin van Hassel & Thierry Vanelslander & Jeffrey Willems, 2023. "Collection and Processing of Roadside Grass Clippings: A Supply Chain Optimization Case Study for East Flanders," Sustainability, MDPI, vol. 15(18), pages 1-24, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:14006-:d:1244619
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/14006/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/14006/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ilya Gelfand & Ritvik Sahajpal & Xuesong Zhang & R. César Izaurralde & Katherine L. Gross & G. Philip Robertson, 2013. "Sustainable bioenergy production from marginal lands in the US Midwest," Nature, Nature, vol. 493(7433), pages 514-517, January.
    2. Roni, Mohammad S. & Thompson, David N. & Hartley, Damon S., 2019. "Distributed biomass supply chain cost optimization to evaluate multiple feedstocks for a biorefinery," Applied Energy, Elsevier, vol. 254(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Jy S. & Tseng, Hui-Kuan & Liu, Xiaoshuai, 2022. "Techno-economic assessment of bioenergy potential on marginal croplands in the U.S. southeast," Energy Policy, Elsevier, vol. 170(C).
    2. Hossain, Tasmin & Jones, Daniela & Hartley, Damon & Griffel, L. Michael & Lin, Yingqian & Burli, Pralhad & Thompson, David N. & Langholtz, Matthew & Davis, Maggie & Brandt, Craig, 2021. "The nth-plant scenario for blended feedstock conversion and preprocessing nationwide: Biorefineries and depots," Applied Energy, Elsevier, vol. 294(C).
    3. Ujjayant Chakravorty & Marie‐Hélène Hubert & Beyza Ural Marchand, 2019. "Food for fuel: The effect of the US biofuel mandate on poverty in India," Quantitative Economics, Econometric Society, vol. 10(3), pages 1153-1193, July.
    4. Guo, Jian-Xin & Tan, Xianchun & Gu, Baihe & Zhu, Kaiwei, 2022. "Integration of supply chain management of hybrid biomass power plant with carbon capture and storage operation," Renewable Energy, Elsevier, vol. 190(C), pages 1055-1065.
    5. Weidong Huang, 2015. "An Integrated Biomass Production and Conversion Process for Sustainable Bioenergy," Sustainability, MDPI, vol. 7(1), pages 1-15, January.
    6. Hoekman, S. Kent & Broch, Amber & Liu, Xiaowei (Vivian), 2018. "Environmental implications of higher ethanol production and use in the U.S.: A literature review. Part I – Impacts on water, soil, and air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3140-3158.
    7. Kiefer, Katharina & Kremer, Jasper & Zeitner, Philipp & Winkler, Bastian & Wagner, Moritz & von Cossel, Moritz, 2023. "Monetizing ecosystem services of perennial wild plant mixtures for bioenergy," Ecosystem Services, Elsevier, vol. 61(C).
    8. Zhang, Shuai & Lei, Qingyu & Wu, Le & Wang, Yuqi & Zheng, Lan & Chen, Xi, 2022. "Supply chain design and integration for the Co-Processing of bio-oil and vacuum gas oil in a refinery," Energy, Elsevier, vol. 241(C).
    9. Liu, Kaimin & Fu, Jianqin & Deng, Banglin & Yang, Jing & Tang, Qijun & Liu, Jingping, 2014. "The influences of pressure and temperature on laminar flame propagations of n-butanol, iso-octane and their blends," Energy, Elsevier, vol. 73(C), pages 703-715.
    10. Mohd Idris, Muhammad Nurariffudin & Hashim, Haslenda & Leduc, Sylvain & Yowargana, Ping & Kraxner, Florian & Woon, Kok Sin, 2021. "Deploying bioenergy for decarbonizing Malaysian energy sectors and alleviating renewable energy poverty," Energy, Elsevier, vol. 232(C).
    11. Perdue, James H. & Stanturf, John A. & Young, Timothy M. & Huang, Xia & Dougherty, Derek & Pigott, Michael & Guo, Zhimei, 2017. "Profitability potential for Pinus taeda L. (loblolly pine) short-rotation bioenergy plantings in the southern USA," Forest Policy and Economics, Elsevier, vol. 83(C), pages 146-155.
    12. Baka, Jennifer & Bailis, Robert, 2014. "Wasteland energy-scapes: a comparative energy flow analysis of India's biofuel and biomass economies," LSE Research Online Documents on Economics 59896, London School of Economics and Political Science, LSE Library.
    13. Rawat, Lakhpat Singh & Maikhuri, Rakesh Kumar & Bahuguna, Yateesh Mohan & Jugran, Arun Kumar & Maletha, Ajay & Jha, Nabi Kanta & Phondani, Prakash Chandra & Dhyani, Deepak & Pharswan, Dalbeer Singh & , 2022. "Rejuvenating ecosystem services through reclaiming degraded land for sustainable societal development: Implications for conservation and human wellbeing," Land Use Policy, Elsevier, vol. 112(C).
    14. Pietro Sciusco & Jiquan Chen & Vincenzo Giannico & Michael Abraha & Cheyenne Lei & Gabriela Shirkey & Jing Yuan & G. Philip Robertson, 2022. "Albedo-Induced Global Warming Impact at Multiple Temporal Scales within an Upper Midwest USA Watershed," Land, MDPI, vol. 11(2), pages 1-19, February.
    15. Searchinger, Timothy D. & Beringer, Tim & Strong, Asa, 2017. "Does the world have low-carbon bioenergy potential from the dedicated use of land?," Energy Policy, Elsevier, vol. 110(C), pages 434-446.
    16. Van Meerbeek, Koenraad & Muys, Bart & Hermy, Martin, 2019. "Lignocellulosic biomass for bioenergy beyond intensive cropland and forests," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 139-149.
    17. Yakubu Abdul-Salam & Melf-Hinrich Ehlers & Jelte Harnmeijer, 2017. "Anaerobic Digestion of Feedstock Grown on Marginal Land: Break-Even Electricity Prices," Energies, MDPI, vol. 10(9), pages 1-21, September.
    18. Saha, Mithun & Eckelman, Matthew J., 2015. "Geospatial assessment of potential bioenergy crop production on urban marginal land," Applied Energy, Elsevier, vol. 159(C), pages 540-547.
    19. Lan, Kai & Ou, Longwen & Park, Sunkyu & Kelley, Stephen S. & English, Burton C. & Yu, T. Edward & Larson, James & Yao, Yuan, 2021. "Techno-Economic Analysis of decentralized preprocessing systems for fast pyrolysis biorefineries with blended feedstocks in the southeastern United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    20. Eugenio Demartini & Anna Gaviglio & Marco Gelati & Daniele Cavicchioli, 2016. "The Effect of Biogas Production on Farmland Rental Prices: Empirical Evidences from Northern Italy," Energies, MDPI, vol. 9(11), pages 1-23, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:14006-:d:1244619. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.