IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i10p8296-d1150987.html
   My bibliography  Save this article

Optimization Method of Transfer Streamlines in Integrated Passenger Hubs Based on 3D Spatial Perspective

Author

Listed:
  • Zhaoguo Huang

    (School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China)

  • Junlan Chen

    (School of Transportation, Southeast University, Nanjing 211189, China
    Department of Civil Engineering, Monash University, Melbourne, VIC 3052, Australia)

  • Xiucheng Guo

    (School of Transportation, Southeast University, Nanjing 211189, China)

  • Changxi Ma

    (School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China)

Abstract

To optimize the functional space layout of various transportation modes of the integrated passenger transport hub, and improve the transfer efficiency and service quality of the hub, a quantitative analysis of the transfer flow lines of the integrated passenger hub is carried out. The research clarifies the layout factors of the functional areas of the “get on and drop off areas” for each mode of transportation, generates a candidate set of the placement of each functional area, and determines the priority ranking of the candidate sets and the transfer starting and end locations. Based on the analysis of passenger route selection factors, the basic transfer streamline network is generated. The basic network is distributed according to the improved shortest path allocation algorithm, and the relevant parameters are calculated to simplify the initial transfer streamline network, generate and compare the initial network plan of the transfer streamline. Take Wuxi Integrated Passenger Transport Hub as an example to verify: when the weight coefficient λ = 0.65 and the number of allocations n = 207, the optimal solution T = 2,738,027 s is obtained. As the calculation is based on the 15,000 passenger transfer flow at Wuxi Station, the optimized average transfer time per person is 3 min 2 s. Compared with the current average transfer time per person at Wuxi Station of 4.5 min, the optimization effect of this paper is significant. The initial network generation and comparison method of the transfer flow line enables the space layout of the transportation modes of the hub to be coordinated with the transfer flow line design, and solves the problem of the transfer flow line design when the hub building space layout is determined. The hub is designed to meet the requirements of functional space layout, passenger transfer needs and interchange efficiency at the initial stage of architectural design.

Suggested Citation

  • Zhaoguo Huang & Junlan Chen & Xiucheng Guo & Changxi Ma, 2023. "Optimization Method of Transfer Streamlines in Integrated Passenger Hubs Based on 3D Spatial Perspective," Sustainability, MDPI, vol. 15(10), pages 1-17, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:8296-:d:1150987
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/10/8296/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/10/8296/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tam, Mei Ling, 2011. "An optimization model for wayfinding problems in terminal building," Journal of Air Transport Management, Elsevier, vol. 17(2), pages 74-79.
    2. Flurin S. Hänseler & Nicholas A. Molyneaux & Michel Bierlaire, 2017. "Estimation of Pedestrian Origin-Destination Demand in Train Stations," Transportation Science, INFORMS, vol. 51(3), pages 981-997, August.
    3. Brons, Martijn & Givoni, Moshe & Rietveld, Piet, 2009. "Access to railway stations and its potential in increasing rail use," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(2), pages 136-149, February.
    4. Solak, Senay & Clarke, John-Paul B. & Johnson, Ellis L., 2009. "Airport terminal capacity planning," Transportation Research Part B: Methodological, Elsevier, vol. 43(6), pages 659-676, July.
    5. Yuan, Yun & Yu, Jie, 2018. "Locating transit hubs in a multi-modal transportation network: A cluster-based optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 85-103.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianxin Lin & Rui Song & Jifeng Dai & Pengpeng Jiao, 2014. "Pedestrian Guiding Signs Optimization for Airport Terminal," Discrete Dynamics in Nature and Society, Hindawi, vol. 2014, pages 1-14, February.
    2. Wu, Paul Pao-Yen & Mengersen, Kerrie, 2013. "A review of models and model usage scenarios for an airport complex system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 47(C), pages 124-140.
    3. Pucher, John & Buehler, Ralph & Seinen, Mark, 2011. "Bicycling renaissance in North America? An update and re-appraisal of cycling trends and policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(6), pages 451-475, July.
    4. Lahoorpoor, Bahman & Levinson, David M., 2020. "Catchment if you can: The effect of station entrance and exit locations on accessibility," Journal of Transport Geography, Elsevier, vol. 82(C).
    5. Courtney Coughenour & Hanns de la Fuente-Mella & Alexander Paz, 2019. "Analysis of Self-Reported Walking for Transit in a Sprawling Urban Metropolitan Area in the Western U.S," Sustainability, MDPI, vol. 11(3), pages 1-16, February.
    6. Manout, Ouassim & Bonnel, Patrick & Bouzouina, Louafi, 2018. "Transit accessibility: A new definition of transit connectors," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 88-100.
    7. Lindsey, Marshall & Schofer, Joseph L. & Durango-Cohen, Pablo & Gray, Kimberly A., 2010. "Relationship between proximity to transit and ridership for journey-to-work trips in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(9), pages 697-709, November.
    8. Weliwitiya, Hesara & Rose, Geoffrey & Johnson, Marilyn, 2019. "Bicycle train intermodality: Effects of demography, station characteristics and the built environment," Journal of Transport Geography, Elsevier, vol. 74(C), pages 395-404.
    9. Yu Shen & Jinhua Zhao, 2017. "Capacity constrained accessibility of high-speed rail," Transportation, Springer, vol. 44(2), pages 395-422, March.
    10. Dimitris Bertsimas & Arthur Delarue & Patrick Jaillet & Sébastien Martin, 2019. "Travel Time Estimation in the Age of Big Data," Operations Research, INFORMS, vol. 67(2), pages 498-515, March.
    11. Richard Fabling & Arthur Grimes & Lynda Sanderson, 2011. "Any port in a storm? The impact of new port infrastructure on New Zealand exporter behaviour," Reserve Bank of New Zealand Discussion Paper Series DP2011/01, Reserve Bank of New Zealand.
    12. Roberto Sañudo & Eneko Echaniz & Borja Alonso & Rubén Cordera, 2019. "Addressing the Importance of Service Attributes in Railways," Sustainability, MDPI, vol. 11(12), pages 1-20, June.
    13. Marti-Henneberg, Jordi, 2015. "Attracting travellers to the high-speed train: a methodology for comparing potential demand between stations," Journal of Transport Geography, Elsevier, vol. 42(C), pages 145-156.
    14. Alexander, Matthew & Hamilton, Kathy, 2015. "A ‘placeful’ station? The community role in place making and improving hedonic value at local railway stations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 65-77.
    15. Rodríguez-Sanz, à lvaro & Fernández de Marcos, Alberto & Pérez-Castán, Javier A. & Comendador, Fernando Gómez & Arnaldo Valdés, Rosa & París Loreiro, à ngel, 2021. "Queue behavioural patterns for passengers at airport terminals: A machine learning approach," Journal of Air Transport Management, Elsevier, vol. 90(C).
    16. Lu Cheng & Zhifu Mi & D’Maris Coffman & Jing Meng & Dining Liu & Dongfeng Chang, 2022. "The Role of Bike Sharing in Promoting Transport Resilience," Networks and Spatial Economics, Springer, vol. 22(3), pages 567-585, September.
    17. Mulley, Corinne & Ho, Chinh & Ho, Loan & Hensher, David & Rose, John, 2018. "Will bus travellers walk further for a more frequent service? An international study using a stated preference approach," Transport Policy, Elsevier, vol. 69(C), pages 88-97.
    18. Minhua Shao & Congcong Xie & Lijun Sun & Lijuan Jiang, 2019. "Optimal Layout of Static Guidance Information in Comprehensive Transportation Hubs Based on Passenger Pathfinding Behavior," Sustainability, MDPI, vol. 11(13), pages 1-21, July.
    19. Ying Ni & Jiaqi Chen, 2020. "Exploring the Effects of the Built Environment on Two Transfer Modes for Metros: Dockless Bike Sharing and Taxis," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    20. Vale, David S. & Viana, Cláudia M. & Pereira, Mauro, 2018. "The extended node-place model at the local scale: Evaluating the integration of land use and transport for Lisbon's subway network," Journal of Transport Geography, Elsevier, vol. 69(C), pages 282-293.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:8296-:d:1150987. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.