IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i5p2585-d756776.html
   My bibliography  Save this article

Australian Renewable-Energy Microgrids: A Humble Past, a Turbulent Present, a Propitious Future

Author

Listed:
  • Simon Wright

    (Institute for Sustainable Futures, University of Technology Sydney, Sydney, NSW 2007, Australia)

  • Mark Frost

    (School of Business, Charles Sturt University, Bathurst, NSW 2795, Australia)

  • Alfred Wong

    (School of Business, Charles Sturt University, Bathurst, NSW 2795, Australia)

  • Kevin A. Parton

    (School of Business, Charles Sturt University, Orange, NSW 2800, Australia)

Abstract

As the global energy market undergoes a wholesale transformation accelerated by the need to decarbonise, a rapid transition to renewable energy and the mass deployment of distributed energy resources, autonomous energy networks or microgrids are emerging as an attractive mechanism for the delivery of electricity to end users. Yet in Australia, at least, relatively little is known about key aspects of microgrids that are fundamental to their successful deployment, not least the more commercial and economic elements rather than the purely technical. Drawing on the extant global literature on microgrids, in this paper, we explore the most important of these aspects including business models, ownership and investment. Identifying the ambiguity, inconsistency and uncertainty evident in many of the feasibility studies currently in train across Australia, in this paper, we highlight specific areas for future research. These research areas must be addressed if the full potential of microgrids is to be realised in the context of a global energy transition both domestically and internationally.

Suggested Citation

  • Simon Wright & Mark Frost & Alfred Wong & Kevin A. Parton, 2022. "Australian Renewable-Energy Microgrids: A Humble Past, a Turbulent Present, a Propitious Future," Sustainability, MDPI, vol. 14(5), pages 1-19, February.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2585-:d:756776
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/5/2585/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/5/2585/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stadler, Michael & Cardoso, Gonçalo & Mashayekh, Salman & Forget, Thibault & DeForest, Nicholas & Agarwal, Ankit & Schönbein, Anna, 2016. "Value streams in microgrids: A literature review," Applied Energy, Elsevier, vol. 162(C), pages 980-989.
    2. Millot, Ariane & Krook-Riekkola, Anna & Maïzi, Nadia, 2020. "Guiding the future energy transition to net-zero emissions: Lessons from exploring the differences between France and Sweden," Energy Policy, Elsevier, vol. 139(C).
    3. Provance, Mike & Donnelly, Richard G. & Carayannis, Elias G., 2011. "Institutional influences on business model choice by new ventures in the microgenerated energy industry," Energy Policy, Elsevier, vol. 39(9), pages 5630-5637, September.
    4. Sauter, Raphael & Watson, Jim, 2007. "Strategies for the deployment of micro-generation: Implications for social acceptance," Energy Policy, Elsevier, vol. 35(5), pages 2770-2779, May.
    5. Meena, Nand K. & Yang, Jin & Zacharis, Evan, 2019. "Optimisation framework for the design and operation of open-market urban and remote community microgrids," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    6. Hanna, Ryan & Ghonima, Mohamed & Kleissl, Jan & Tynan, George & Victor, David G., 2017. "Evaluating business models for microgrids: Interactions of technology and policy," Energy Policy, Elsevier, vol. 103(C), pages 47-61.
    7. Geels, Frank W. & Schot, Johan, 2007. "Typology of sociotechnical transition pathways," Research Policy, Elsevier, vol. 36(3), pages 399-417, April.
    8. Fioriti, Davide & Frangioni, Antonio & Poli, Davide, 2021. "Optimal sizing of energy communities with fair revenue sharing and exit clauses: Value, role and business model of aggregators and users," Applied Energy, Elsevier, vol. 299(C).
    9. Genc, Talat S. & Reynolds, Stanley S., 2019. "Who should own a renewable technology? Ownership theory and an application," International Journal of Industrial Organization, Elsevier, vol. 63(C), pages 213-238.
    10. Howard, Bahareh Sara & Hamilton, Nicholas E. & Diesendorf, Mark & Wiedmann, Thomas, 2018. "Modeling the carbon budget of the Australian electricity sector's transition to renewable energy," Renewable Energy, Elsevier, vol. 125(C), pages 712-728.
    11. Green, Jemma & Newman, Peter, 2017. "Citizen utilities: The emerging power paradigm," Energy Policy, Elsevier, vol. 105(C), pages 283-293.
    12. Kyritsis, Evangelos & Andersson, Jonas & Serletis, Apostolos, 2017. "Electricity prices, large-scale renewable integration, and policy implications," Energy Policy, Elsevier, vol. 101(C), pages 550-560.
    13. Wilkinson, Sam & Maticka, Martin J. & Liu, Yue & John, Michele, 2021. "The duck curve in a drying pond: The impact of rooftop PV on the Western Australian electricity market transition," Utilities Policy, Elsevier, vol. 71(C).
    14. Fridgen, Gilbert & Kahlen, Micha & Ketter, Wolfgang & Rieger, Alexander & Thimmel, Markus, 2018. "One rate does not fit all: An empirical analysis of electricity tariffs for residential microgrids," Applied Energy, Elsevier, vol. 210(C), pages 800-814.
    15. Walker, Gordon, 2008. "What are the barriers and incentives for community-owned means of energy production and use?," Energy Policy, Elsevier, vol. 36(12), pages 4401-4405, December.
    16. Ustun, Taha Selim & Ozansoy, Cagil & Zayegh, Aladin, 2011. "Recent developments in microgrids and example cases around the world—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4030-4041.
    17. Raven, Rob, 2007. "Niche accumulation and hybridisation strategies in transition processes towards a sustainable energy system: An assessment of differences and pitfalls," Energy Policy, Elsevier, vol. 35(4), pages 2390-2400, April.
    18. Long, Chao & Wu, Jianzhong & Zhou, Yue & Jenkins, Nick, 2018. "Peer-to-peer energy sharing through a two-stage aggregated battery control in a community Microgrid," Applied Energy, Elsevier, vol. 226(C), pages 261-276.
    19. Warneryd, Martin & Håkansson, Maria & Karltorp, Kersti, 2020. "Unpacking the complexity of community microgrids: A review of institutions’ roles for development of microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    20. Gui, Emi Minghui & Diesendorf, Mark & MacGill, Iain, 2017. "Distributed energy infrastructure paradigm: Community microgrids in a new institutional economics context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1355-1365.
    21. Müller, Simon C. & Welpe, Isabell M., 2018. "Sharing electricity storage at the community level: An empirical analysis of potential business models and barriers," Energy Policy, Elsevier, vol. 118(C), pages 492-503.
    22. Antonelli, Marco & Desideri, Umberto & Franco, Alessandro, 2018. "Effects of large scale penetration of renewables: The Italian case in the years 2008–2015," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3090-3100.
    23. Engelken, Maximilian & Römer, Benedikt & Drescher, Marcus & Welpe, Isabell M. & Picot, Arnold, 2016. "Comparing drivers, barriers, and opportunities of business models for renewable energies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 795-809.
    24. Louise Krog & Karl Sperling & Henrik Lund, 2018. "Barriers and Recommendations to Innovative Ownership Models for Wind Power," Energies, MDPI, vol. 11(10), pages 1-16, September.
    25. Lenhart, Stephanie & Araújo, Kathleen, 2021. "Microgrid decision-making by public power utilities in the United States: A critical assessment of adoption and technological profiles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    26. Brummer, Vasco, 2018. "Community energy – benefits and barriers: A comparative literature review of Community Energy in the UK, Germany and the USA, the benefits it provides for society and the barriers it faces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 187-196.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying-Che Hung & Chien-Hua Ho & Liang-Yü Chen & Shih-Chieh Ma & Te-I Liu & Yi-Chen Shen, 2023. "Using a Low-Temperature Pyrolysis Device for Polymeric Waste to Implement a Distributed Energy System," Sustainability, MDPI, vol. 15(2), pages 1-15, January.
    2. Rahmat Aazami & Omid Heydari & Jafar Tavoosi & Mohammadamin Shirkhani & Ardashir Mohammadzadeh & Amir Mosavi, 2022. "Optimal Control of an Energy-Storage System in a Microgrid for Reducing Wind-Power Fluctuations," Sustainability, MDPI, vol. 14(10), pages 1-14, May.
    3. Marcelino, C.G. & Leite, G.M.C. & Wanner, E.F. & Jiménez-Fernández, S. & Salcedo-Sanz, S., 2023. "Evaluating the use of a Net-Metering mechanism in microgrids to reduce power generation costs with a swarm-intelligent algorithm," Energy, Elsevier, vol. 266(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Sachs & Anna Gründler & Milos Rusic & Gilbert Fridgen, 2019. "Framing Microgrid Design from a Business and Information Systems Engineering Perspective," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(6), pages 729-744, December.
    2. Lenhart, Stephanie & Araújo, Kathleen, 2021. "Microgrid decision-making by public power utilities in the United States: A critical assessment of adoption and technological profiles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    3. Warneryd, Martin & Håkansson, Maria & Karltorp, Kersti, 2020. "Unpacking the complexity of community microgrids: A review of institutions’ roles for development of microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    4. Wolsink, Maarten, 2020. "Distributed energy systems as common goods: Socio-political acceptance of renewables in intelligent microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    5. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    6. Maarten Wolsink, 2020. "Framing in Renewable Energy Policies: A Glossary," Energies, MDPI, vol. 13(11), pages 1-31, June.
    7. Àlex Alonso & Jordi de la Hoz & Helena Martín & Sergio Coronas & José Matas, 2021. "Individual vs. Community: Economic Assessment of Energy Management Systems under Different Regulatory Frameworks," Energies, MDPI, vol. 14(3), pages 1-27, January.
    8. Farrelly, M.A. & Tawfik, S., 2020. "Engaging in disruption: A review of emerging microgrids in Victoria, Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    9. Kaczmarski, Jesse I., 2022. "Public support for community microgrid services," Energy Economics, Elsevier, vol. 115(C).
    10. Tuomo Joensuu & Markku Norvasuo & Harry Edelman, 2019. "Stakeholders’ Interests in Developing an Energy Ecosystem for the Superblock—Case Hiedanranta," Sustainability, MDPI, vol. 12(1), pages 1-19, December.
    11. Schwidtal, J.M. & Piccini, P. & Troncia, M. & Chitchyan, R. & Montakhabi, M. & Francis, C. & Gorbatcheva, A. & Capper, T. & Mustafa, M.A. & Andoni, M. & Robu, V. & Bahloul, M. & Scott, I.J. & Mbavarir, 2023. "Emerging business models in local energy markets: A systematic review of peer-to-peer, community self-consumption, and transactive energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    12. Koirala, Binod Prasad & van Oost, Ellen & van der Windt, Henny, 2018. "Community energy storage: A responsible innovation towards a sustainable energy system?," Applied Energy, Elsevier, vol. 231(C), pages 570-585.
    13. Cristina Acosta & Mariana Ortega & Till Bunsen & Binod Prasad Koirala & Amineh Ghorbani, 2018. "Facilitating Energy Transition through Energy Commons: An Application of Socio-Ecological Systems Framework for Integrated Community Energy Systems," Sustainability, MDPI, vol. 10(2), pages 1-15, January.
    14. F.G. Reis, Inês & Gonçalves, Ivo & A.R. Lopes, Marta & Henggeler Antunes, Carlos, 2021. "Business models for energy communities: A review of key issues and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    15. Adamu Sani Yahaya & Nadeem Javaid & Fahad A. Alzahrani & Amjad Rehman & Ibrar Ullah & Affaf Shahid & Muhammad Shafiq, 2020. "Blockchain Based Sustainable Local Energy Trading Considering Home Energy Management and Demurrage Mechanism," Sustainability, MDPI, vol. 12(8), pages 1-28, April.
    16. Moiz Masood Syed & Gregory M. Morrison & James Darbyshire, 2020. "Shared Solar and Battery Storage Configuration Effectiveness for Reducing the Grid Reliance of Apartment Complexes," Energies, MDPI, vol. 13(18), pages 1-23, September.
    17. Michael Hamwi & Iban Lizarralde, 2019. "Demand-side management and renewable energy business models for energy transition A systematic review," Post-Print hal-02448505, HAL.
    18. Keck, Felix & Lenzen, Manfred, 2021. "Drivers and benefits of shared demand-side battery storage – an Australian case study," Energy Policy, Elsevier, vol. 149(C).
    19. Norouzi, Farshid & Hoppe, Thomas & Elizondo, Laura Ramirez & Bauer, Pavol, 2022. "A review of socio-technical barriers to Smart Microgrid development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    20. Juntunen, Jouni K. & Hyysalo, Sampsa, 2015. "Renewable micro-generation of heat and electricity—Review on common and missing socio-technical configurations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 857-870.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2585-:d:756776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.