IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i3p1897-d743803.html
   My bibliography  Save this article

Spatio-Temporal Assessment of Biomass Self-Sufficiency in the European Union

Author

Listed:
  • Vlada Vitunskienė

    (Faculty of Bioeconomy Development, Vytautas Magnus University, LT-44248 Kaunas, Lithuania)

  • Akvilė Aleksandravičienė

    (Faculty of Bioeconomy Development, Vytautas Magnus University, LT-44248 Kaunas, Lithuania)

  • Neringa Ramanauskė

    (Faculty of Economics and Business Administration, Vilnius University, LT-01513 Vilnius, Lithuania)

Abstract

Growing concerns over ecosystem degradation, climate change, loss in biodiversity, and rapid depletion of natural resources have urged societies of the developed countries all over the world to encounter the challenge of shifting from fossil-based to bio-based economies. With European Green Deal priorities on a transition to a climate-neutral economy with net-zero GHGs emissions by 2050, projected demand for biomass is 40–100% higher, relative to its supply. To provide an overview on the capacity of the European Union countries to satisfy its demand for biomass through the organic materials extracted directly from the domestic natural environment, the study aimed to assess the biomass self-sufficiency based on its domestic extraction-domestic consumption balance. Both the spatial and temporal variability of the self-sufficiency ratio are used to characterise the stability of capacity to satisfy our own needs for biomass in the EU economy as a whole, and at the level of individual member states. The findings indicate that the differences in biomass self-sufficiency ratios are quite high among the European Union member countries (i.e., in the range of 15% in Malta and 33% in Cyprus; up to 184% in Estonia and 224% in Latvia (on average in 2016–2018)). GMM analysis (EU-28, 2000–2018 period) is provided in this study to define the main statistically significant factors that have an impact on the biomass self-sufficiency ratio. This study contributes to the debate on the issues of biomass self-sufficiency in the context of ecological constraint and the EU’s Green Deal.

Suggested Citation

  • Vlada Vitunskienė & Akvilė Aleksandravičienė & Neringa Ramanauskė, 2022. "Spatio-Temporal Assessment of Biomass Self-Sufficiency in the European Union," Sustainability, MDPI, vol. 14(3), pages 1-19, February.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1897-:d:743803
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/3/1897/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/3/1897/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Julia Jouan & Aude Ridier & Matthieu Carof, 2020. "Legume production and use in feed: Analysis of levers to improve protein self-sufficiency from foresight scenarios," Post-Print hal-02907077, HAL.
    2. Beckman, Jayson & Ivanic, Maros & Jelliffe, Jeremy L. & Baquedano, Felix G. & Scott, Sara G., 2020. "Economic and Food Security Impacts of Agricultural Input Reduction Under the European Union Green Deal’s Farm to Fork and Biodiversity Strategies," Agricultural Economic Reports 307277, United States Department of Agriculture, Economic Research Service.
    3. Kristina Matuzeviciute & Mindaugas Butkus & Akvile Karaliute, 2017. "Do Technological Innovations Affect Unemployment? Some Empirical Evidence from European Countries," Economies, MDPI, vol. 5(4), pages 1-19, December.
    4. Souhil Harchaoui & Petros Chatzimpiros, 2018. "Can Agriculture Balance Its Energy Consumption and Continue to Produce Food? A Framework for Assessing Energy Neutrality Applied to French Agriculture," Sustainability, MDPI, vol. 10(12), pages 1-14, December.
    5. Stefano Gaudino & Pytrik Reidsma & Argyris Kanellopoulos & Dario Sacco & Martin K. Van Ittersum, 2018. "Integrated Assessment of the EU’s Greening Reform and Feed Self-Sufficiency Scenarios on Dairy Farms in Piemonte, Italy," Agriculture, MDPI, vol. 8(9), pages 1-27, September.
    6. Kes McCormick & Niina Kautto, 2013. "The Bioeconomy in Europe: An Overview," Sustainability, MDPI, vol. 5(6), pages 1-20, June.
    7. Kalt, Gerald & Kaufmann, Lisa & Kastner, Thomas & Krausmann, Fridolin, 2021. "Tracing Austria's biomass consumption to source countries: A product-level comparison between bioenergy, food and material," Ecological Economics, Elsevier, vol. 188(C).
    8. Hans van Meijl & Petr Havlik & Hermann Lotze-Campen & Elke Stehfest & Peter Witzke & Ignacio Perez Dominguez & Benjamin Bodirsky & Michiel van Dijk & Jonathan Doelman & Thomas Fellmann & Florian Humpe, 2017. "Challenges of Global Agriculture in a Climate Change Context by 2050 (AgCLIM50)," JRC Research Reports JRC106835, Joint Research Centre.
    9. Budzianowski, Wojciech M., 2017. "High-value low-volume bioproducts coupled to bioenergies with potential to enhance business development of sustainable biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 793-804.
    10. BARREIRO HURLE Jesus & BOGONOS Mariia & HIMICS Mihaly & HRISTOV Jordan & PEREZ DOMINGUEZ Ignacio & SAHOO Amarendra & SALPUTRA Guna & WEISS Franz & BALDONI Edoardo & ELLEBY Christian, 2021. "Modelling environmental and climate ambition in the agricultural sector with the CAPRI model," JRC Research Reports JRC121368, Joint Research Centre.
    11. Popp, J. & Lakner, Z. & Harangi-Rákos, M. & Fári, M., 2014. "The effect of bioenergy expansion: Food, energy, and environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 559-578.
    12. Krausmann, Fridolin & Erb, Karl-Heinz & Gingrich, Simone & Lauk, Christian & Haberl, Helmut, 2008. "Global patterns of socioeconomic biomass flows in the year 2000: A comprehensive assessment of supply, consumption and constraints," Ecological Economics, Elsevier, vol. 65(3), pages 471-487, April.
    13. Margherita Masi & Yari Vecchio & Gregorio Pauselli & Jorgelina Di Pasquale & Felice Adinolfi, 2021. "A Typological Classification for Assessing Farm Sustainability in the Italian Bovine Dairy Sector," Sustainability, MDPI, vol. 13(13), pages 1-14, June.
    14. Mayer, Andreas & Kaufmann, Lisa & Kalt, Gerald & Matej, Sarah & Theurl, Michaela C. & Morais, Tiago G. & Leip, Adrian & Erb, Karl-Heinz, 2021. "Applying the Human Appropriation of Net Primary Production framework to map provisioning ecosystem services and their relation to ecosystem functioning across the European Union," Ecosystem Services, Elsevier, vol. 51(C).
    15. Ji, Xi & Liu, Yifang & Meng, Jing & Wu, Xudong, 2020. "Global supply chain of biomass use and the shift of environmental welfare from primary exploiters to final consumers," Applied Energy, Elsevier, vol. 276(C).
    16. Hoo Poh Ying & Cassendra Bong Phun Chien & Fan Yee Van, 2020. "Operational Management Implemented in Biofuel Upstream Supply Chain and Downstream International Trading: Current Issues in Southeast Asia," Energies, MDPI, vol. 13(7), pages 1-26, April.
    17. John T. Saunders & Marcel Adenäuer & Jonathan Brooks, 2019. "Analysis of long-term challenges for agricultural markets," OECD Food, Agriculture and Fisheries Papers 131, OECD Publishing.
    18. Pablo Brañas-Garza & Marisa Bucheli & Teresa Garcia-Muñoz, 2011. "Dynamic panel data: A useful technique in experiments," ThE Papers 10/22, Department of Economic Theory and Economic History of the University of Granada..
    19. Algieri, Angelo & Andiloro, Serafina & Tamburino, Vincenzo & Zema, Demetrio Antonio, 2019. "The potential of agricultural residues for energy production in Calabria (Southern Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 1-14.
    20. Shahrzad Gholizadeh Sarabi & Mohammad Rahim Rahnama, 2021. "From self-sufficient provision of water and energy to regenerative urban development and sustainability: exploring the potentials in Mashhad City, Iran," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 64(14), pages 2459-2480, December.
    21. Clapp, Jennifer, 2017. "Food self-sufficiency: Making sense of it, and when it makes sense," Food Policy, Elsevier, vol. 66(C), pages 88-96.
    22. Julia C. Terrapon-Pfaff, 2012. "Linking Energy- and Land-Use Systems: Energy Potentials and Environmental Risks of Using Agricultural Residues in Tanzania," Sustainability, MDPI, vol. 4(3), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marquina, Jesús & Colinet, María José & Pablo-Romero, María del P., 2021. "The economic value of olive sector biomass for thermal and electrical uses in Andalusia (Spain)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Jerome Dumortier & Miguel Carriquiry & Amani Elobeid, 2021. "Impact of climate change on global agricultural markets under different shared socioeconomic pathways," Agricultural Economics, International Association of Agricultural Economists, vol. 52(6), pages 963-984, November.
    3. Jayson Beckman & Maros Ivanic & Jeremy Jelliffe & Shawn Arita, 2022. "Adopt or not adopt? Mirror clauses and the European Green Deal," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 44(4), pages 2014-2033, December.
    4. Mayer, Andreas & Kaufmann, Lisa & Kalt, Gerald & Matej, Sarah & Theurl, Michaela C. & Morais, Tiago G. & Leip, Adrian & Erb, Karl-Heinz, 2021. "Applying the Human Appropriation of Net Primary Production framework to map provisioning ecosystem services and their relation to ecosystem functioning across the European Union," Ecosystem Services, Elsevier, vol. 51(C).
    5. Kennedy Ndue & Goda Pál, 2022. "European Green Transition Implications on Africa’s Livestock Sector Development and Resilience to Climate Change," Sustainability, MDPI, vol. 14(21), pages 1-29, November.
    6. Plank, Christina & Görg, Christoph & Kalt, Gerald & Kaufmann, Lisa & Dullinger, Stefan & Krausmann, Fridolin, 2023. "“Biomass from somewhere?” Governing the spatial mismatch of Viennese biomass consumption and its impact on biodiversity," Land Use Policy, Elsevier, vol. 131(C).
    7. Kalt, Gerald & Mayer, Andreas & Haberl, Helmut & Kaufmann, Lisa & Lauk, Christian & Matej, Sarah & Röös, Elin & Theurl, Michaela C. & Erb, Karl-Heinz, 2021. "Exploring the option space for land system futures at regional to global scales: The diagnostic agro-food, land use and greenhouse gas emission model BioBaM-GHG 2.0," Ecological Modelling, Elsevier, vol. 459(C).
    8. Tina D. Beuchelt & Michael Nassl, 2019. "Applying a Sustainable Development Lens to Global Biomass Potentials," Sustainability, MDPI, vol. 11(18), pages 1-26, September.
    9. Do, Manh Hung & Nguyen, Trung Thanh & Grote, Ulrike, 2023. "Land consolidation, rice production, and agricultural transformation: Evidence from household panel data for Vietnam," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 157-173.
    10. Iftekhairul Islam & Fahad Shaon, 2020. "If the Prospect of Some Occupations Are Stagnating With Technological Advancement? A Task Attribute Approach to Detect Employment Vulnerability," Papers 2001.02783, arXiv.org.
    11. Daniela Pasnicu & Mihaela Ghenta & Aniela Matei, 2019. "Transition to Bioeconomy: Perceptions and Behaviors in Central and Eastern Europe," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 21(50), pages 1-9, February.
    12. Eckart Woertz, 2020. "Wither the self-sufficiency illusion? Food security in Arab Gulf States and the impact of COVID-19," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(4), pages 757-760, August.
    13. Jin Guo & Tetsuji Tanaka, 2020. "The Effectiveness of Self-Sufficiency Policy: International Price Transmissions in Beef Markets," Sustainability, MDPI, vol. 12(15), pages 1-23, July.
    14. Kumari, Rajni & Kumar, Manish & Vivekanand, V. & Pareek, Nidhi, 2023. "Chitin biorefinery: A narrative and prophecy of crustacean shell waste sustainable transformation into bioactives and renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    15. Zeke Marshall & Paul E. Brockway, 2020. "A Net Energy Analysis of the Global Agriculture, Aquaculture, Fishing and Forestry System," Biophysical Economics and Resource Quality, Springer, vol. 5(2), pages 1-27, June.
    16. Grzegorz Ślusarz & Barbara Gołębiewska & Marek Cierpiał-Wolan & Jarosław Gołębiewski & Dariusz Twaróg & Sebastian Wójcik, 2021. "Regional Diversification of Potential, Production and Efficiency of Use of Biogas and Biomass in Poland," Energies, MDPI, vol. 14(3), pages 1-20, January.
    17. Benedikt Finnah, 2022. "Optimal bidding functions for renewable energies in sequential electricity markets," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 1-27, March.
    18. Minjeong Kim & Changki Shim & Jaehyeong Lee & Choeki Wangchuk, 2022. "Hot Water Treatment as Seed Disinfection Techniques for Organic and Eco-Friendly Environmental Agricultural Crop Cultivation," Agriculture, MDPI, vol. 12(8), pages 1-16, July.
    19. Meike Weltin & Silke Hüttel, 2023. "Sustainable Intensification Farming as an Enabler for Farm Eco-Efficiency?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(1), pages 315-342, January.
    20. Davide Dell’Unto & Gabriele Dono & Raffaele Cortignani, 2023. "Impacts of Environmental Targets on the Livestock Sector: An Assessment Tool Applied to Italy," Agriculture, MDPI, vol. 13(4), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:3:p:1897-:d:743803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.